multi-mapping Dotaz Zobrazit nápovědu
Background: The Medical Information Database Network (MID-NET) is a national project that promotes effective safety measures for the active surveillance of drug safety assessments through pharmacoepidemiological methods, using real-world data in Japan. The MID-NET contains the data of approximately 5.05 million patients (as of December 2019) across 10 medical institutions, including 23 hospitals. One of the most important conditions for conducting pharmacoepidemiological research using multiple medical databases is to systematically verify of data standardization. Objectives: To evaluate the effect of improving the accuracy of standard data quality control by the development of a validation model for standard code mapping in multiple medical information databases. Methods: We established the standard code mapping validation center at one of the cooperating medical institutions of the MID-NET that could collect and manage information about the standard code interoperability. Additionally, we used the mapping table for the four standard codes, including the Japan Laboratory Test Standard Code, 10th Revision (JLAC10) code were collected from MID-NET cooperating institutions, and the accuracy of the mapping table was evaluated. Results: The observed four standard codes mapping ratio between institutions varied from >2,000 to <100. Moreover, the accuracies of standard codes were not standardized. We used a centralized standard code mapping validation model to provide feedback for standardizing JLAC-10 for each institution and meaningful differences between institutions were improved. Conclusions: The developed model visualized information differences and improved the data quality between multiple medical institutions.
- Publikační typ
- abstrakt z konference MeSH
Ever since the introduction of high-throughput sequencing following the human genome project, assembling short reads into a reference of sufficient quality posed a significant problem as a large portion of the human genome-estimated 50-69%-is repetitive. As a result, a sizable proportion of sequencing reads is multi-mapping, i.e., without a unique placement in the genome. The two key parameters for whether or not a read is multi-mapping are the read length and genome complexity. Long reads are now able to span difficult, heterochromatic regions, including full centromeres, and characterize chromosomes from "telomere to telomere". Moreover, identical reads or repeat arrays can be differentiated based on their epigenetic marks, such as methylation patterns, aiding in the assembly process. This is despite the fact that long reads still contain a modest percentage of sequencing errors, disorienting the aligners and assemblers both in accuracy and speed. Here, I review the proposed and implemented solutions to the repeat resolution and the multi-mapping read problem, as well as the downstream consequences of reference choice, repeat masking, and proper representation of sex chromosomes. I also consider the forthcoming challenges and solutions with regards to long reads, where we expect the shift from the problem of repeat localization within a single individual to the problem of repeat positioning within pangenomes.
- MeSH
- centromera chemie MeSH
- délka genomu MeSH
- genom lidský * MeSH
- lidé MeSH
- mapování chromozomů metody MeSH
- metylace DNA MeSH
- mikrosatelitní repetice * MeSH
- pohlavní chromozomy chemie MeSH
- telomery chemie MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Chromosomal inversions occur in natural populations of many species, and may underlie reproductive isolation and local adaptation. Traditional methods of inversion discovery are labor-intensive and lack sensitivity. Here, we report the use of three-dimensional contact probabilities between genomic loci as assayed by chromosome-conformation capture sequencing (Hi-C) to detect multi-megabase polymorphic inversions in four barley genotypes. Inversions are validated by fluorescence in situ hybridization and Bionano optical mapping. We propose Hi-C as a generally applicable method for inversion discovery in natural populations.
Pediatric steroid-sensitive nephrotic syndrome (pSSNS) is the most common childhood glomerular disease. Previous genome-wide association studies (GWAS) identified a risk locus in the HLA Class II region and three additional independent risk loci. But the genetic architecture of pSSNS, and its genetically driven pathobiology, is largely unknown. Here, we conduct a multi-population GWAS meta-analysis in 38,463 participants (2440 cases). We then conduct conditional analyses and population specific GWAS. We discover twelve significant associations-eight from the multi-population meta-analysis (four novel), two from the multi-population conditional analysis (one novel), and two additional novel loci from the European meta-analysis. Fine-mapping implicates specific amino acid haplotypes in HLA-DQA1 and HLA-DQB1 driving the HLA Class II risk locus. Non-HLA loci colocalize with eQTLs of monocytes and numerous T-cell subsets in independent datasets. Colocalization with kidney eQTLs is lacking but overlap with kidney cell open chromatin suggests an uncharacterized disease mechanism in kidney cells. A polygenic risk score (PRS) associates with earlier disease onset. Altogether, these discoveries expand our knowledge of pSSNS genetic architecture across populations and provide cell-specific insights into its molecular drivers. Evaluating these associations in additional cohorts will refine our understanding of population specificity, heterogeneity, and clinical and molecular associations.
- MeSH
- celogenomová asociační studie * MeSH
- dítě MeSH
- genetická predispozice k nemoci MeSH
- haplotypy MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- nefrotický syndrom * genetika MeSH
- rizikové faktory MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
In this retrospective study we analysed changes of the ST segment in patients with arterial hypertension using multi-lead body surface mapping of the electric heart field as the ST segment often shows non-specific changes and is influenced by many different conditions. We constructed isointegral maps (IIM) of chosen intervals (the first 35 ms, the first 80 ms, and the whole ST segment) in 42 patients with arterial hypertension (with and without left ventricular hypertrophy) and in the control group involving 23 healthy persons. We analysed the position and values of map extrema. Spatial distribution of voltage integrals was similar in the control group and in the “pure” hypertensives. Patients with the left ventricular hypertrophy exhibited shifts of the integral minima. Despite our expectations, the highest extrema values were found in the control group and not in the left ventricular hypertrophy group. The extrema values were similar in all hypertensives, with or without left ventricular hypertrophy. Differences could be explained neither by the influence of the age, nor by the body habitus.
- MeSH
- dospělí MeSH
- hypertenze komplikace patofyziologie MeSH
- hypertrofie levé komory srdeční komplikace patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mapování potenciálů tělesného povrchu metody MeSH
- modely kardiovaskulární MeSH
- retrospektivní studie MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH
There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping.
Identifying the genetic factors impacting the adaptation of crops to environmental conditions is of key interest for conservation and selection purposes. It can be achieved using population genomics, and evolutionary or quantitative genetics. Here we present a sorghum multireference back-cross nested association mapping population composed of 3,901 lines produced by crossing 24 diverse parents to 3 elite parents from West and Central Africa-back-cross nested association mapping. The population was phenotyped in environments characterized by differences in photoperiod, rainfall pattern, temperature levels, and soil fertility. To integrate the multiparental and multi-environmental dimension of our data we proposed a new approach for quantitative trait loci (QTL) detection and parental effect estimation. We extended our model to estimate QTL effect sensitivity to environmental covariates, which facilitated the integration of envirotyping data. Our models allowed spatial projections of the QTL effects in agro-ecologies of interest. We utilized this strategy to analyze the genetic architecture of flowering time and plant height, which represents key adaptation mechanisms in environments like West Africa. Our results allowed a better characterization of well-known genomic regions influencing flowering time concerning their response to photoperiod with Ma6 and Ma1 being photoperiod-sensitive and the region of possible candidate gene Elf3 being photoperiod-insensitive. We also accessed a better understanding of plant height genetic determinism with the combined effects of phenology-dependent (Ma6) and independent (qHT7.1 and Dw3) genomic regions. Therefore, we argue that the West and Central Africa-back-cross nested association mapping and the presented analytical approach constitute unique resources to better understand adaptation in sorghum with direct application to develop climate-smart varieties.
The precocious germination of cereal grains before harvest, also known as pre-harvest sprouting, is an important source of yield and quality loss in cereal production. Pre-harvest sprouting is a complex grain defect and is becoming an increasing challenge due to changing climate patterns. Resistance to sprouting is multi-genic, although a significant proportion of the sprouting variation in modern wheat cultivars is controlled by a few major quantitative trait loci, including Phs-A1 in chromosome arm 4AL. Despite its importance, little is known about the physiological basis and the gene(s) underlying this important locus. In this study, we characterized Phs-A1 and show that it confers resistance to sprouting damage by affecting the rate of dormancy loss during dry seed after-ripening. We show Phs-A1 to be effective even when seeds develop at low temperature (13 °C). Comparative analysis of syntenic Phs-A1 intervals in wheat and Brachypodium uncovered ten orthologous genes, including the Plasma Membrane 19 genes (PM19-A1 and PM19-A2) previously proposed as the main candidates for this locus. However, high-resolution fine-mapping in two bi-parental UK mapping populations delimited Phs-A1 to an interval 0.3 cM distal to the PM19 genes. This study suggests the possibility that more than one causal gene underlies this major pre-harvest sprouting locus. The information and resources reported in this study will help test this hypothesis across a wider set of germplasm and will be of importance for breeding more sprouting resilient wheat varieties.
- MeSH
- chromozomy rostlin genetika fyziologie MeSH
- genotypizační techniky MeSH
- jednonukleotidový polymorfismus genetika MeSH
- klíčení genetika fyziologie MeSH
- lokus kvantitativního znaku genetika fyziologie MeSH
- mapování chromozomů MeSH
- pšenice genetika růst a vývoj MeSH
- rostlinné geny genetika fyziologie MeSH
- vegetační klid genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH