Background and Aims: The non-specific phospholipase C (NPC) is a new member of the plant phospholipase family that reacts to abiotic environmental stresses, such as phosphate deficiency, high salinity, heat and aluminium toxicity, and is involved in root development, silicon distribution and brassinolide signalling. Six NPC genes (NPC1-NPC6) are found in the Arabidopsis genome. The NPC2 isoform has not been experimentally characterized so far. Methods: The Arabidopsis NPC2 isoform was cloned and heterologously expressed in Escherichia coli. NPC2 enzyme activity was determined using fluorescent phosphatidylcholine as a substrate. Tissue expression and subcellular localization were analysed using GUS- and GFP-tagged NPC2. The expression patterns of NPC2 were analysed via quantitative real-time PCR. Independent homozygous transgenic plant lines overexpressing NPC2 under the control of a 35S promoter were generated, and reactive oxygen species were measured using a luminol-based assay. Key Results: The heterologously expressed protein possessed phospholipase C activity, being able to hydrolyse phosphatidylcholine to diacylglycerol. NPC2 tagged with GFP was predominantly localized to the Golgi apparatus in Arabidopsis roots. The level of NPC2 transcript is rapidly altered during plant immune responses and correlates with the activation of multiple layers of the plant defence system. Transcription of NPC2 decreased substantially after plant infiltration with Pseudomonas syringae, flagellin peptide flg22 and salicylic acid treatments and expression of the effector molecule AvrRpm1. The decrease in NPC2 transcript levels correlated with a decrease in NPC2 enzyme activity. NPC2-overexpressing mutants showed higher reactive oxygen species production triggered by flg22. Conclusions: This first experimental characterization of NPC2 provides new insights into the role of the non-specific phospholipase C protein family. The results suggest that NPC2 is involved in the response of Arabidopsis to P. syringae attack.
- MeSH
- Arabidopsis enzymology immunology microbiology MeSH
- Phosphatidylcholines metabolism MeSH
- Type C Phospholipases physiology MeSH
- Golgi Apparatus enzymology MeSH
- Plant Immunity physiology MeSH
- Cloning, Molecular MeSH
- Microscopy, Confocal MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Plant Diseases immunology microbiology MeSH
- Arabidopsis Proteins physiology MeSH
- Protoplasts enzymology MeSH
- Pseudomonas syringae * MeSH
- Reactive Oxygen Species MeSH
- Gene Expression Regulation, Plant MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Methoxychlor (MXC) and vinclozolin (VIN) are well-recognized endocrine disrupting chemicals known to alter epigenetic regulations and transgenerational inheritance; however, non-endocrine disruption endpoints are also important. Thus, we determined the effects of MXC and VIN on the dysregulation of gap junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells. Both chemicals induced a rapid dysregulation of GJIC at non-cytotoxic doses, with 30 min EC50 values for GJIC inhibition being 10 µM for MXC and 126 µM for VIN. MXC inhibited GJIC for at least 24 h, while VIN effects were transient and GJIC recovered after 4 h. VIN induced rapid hyperphosphorylation and internalization of gap junction protein connexin43, and both chemicals also activated MAPK ERK1/2 and p38. Effects on GJIC were not prevented by MEK1/2 inhibitor, but by an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), resveratrol, and in the case of VIN, also, by a p38 inhibitor. Estrogen (ER) and androgen receptor (AR) modulators (estradiol, ICI 182,780, HPTE, testosterone, flutamide, VIN M2) did not attenuate MXC or VIN effects on GJIC. Our data also indicate that the effects were elicited by the parental compounds of MXC and VIN. Our study provides new evidence that MXC and VIN dysregulate GJIC via mechanisms involving rapid activation of PC-PLC occurring independently of ER- or AR-dependent genomic signaling. Such alterations of rapid intercellular and intracellular signaling events involved in regulations of gene expression, tissue development, function and homeostasis, could also contribute to transgenerational epigenetic effects of endocrine disruptors.
- MeSH
- Receptors, Androgen metabolism MeSH
- Cell Line MeSH
- Insecticides toxicity MeSH
- Liver cytology drug effects metabolism MeSH
- Stem Cells drug effects metabolism MeSH
- Connexin 43 metabolism MeSH
- Rats MeSH
- MAP Kinase Signaling System drug effects MeSH
- Methoxychlor toxicity MeSH
- Gap Junctions drug effects MeSH
- Cell Communication drug effects MeSH
- p38 Mitogen-Activated Protein Kinases metabolism MeSH
- Oxazoles toxicity MeSH
- Rats, Inbred F344 MeSH
- Receptors, Estrogen metabolism MeSH
- Signal Transduction drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
UNLABELLED: Dysregulation of gap junctional intercellular communication (GJIC) has been associated with different pathologies, including cancer; however, molecular mechanisms regulating GJIC are not fully understood. Mitogen Activated Protein Kinase (MAPK)-dependent mechanisms of GJIC-dysregulation have been well-established, however recent discoveries have implicated phosphatidylcholine-specific phospholipase C (PC-PLC) in the regulation of GJIC. What is not known is how prevalent these two signaling mechanisms are in toxicant/toxin-induced dysregulation of GJIC, and do toxicants/toxins work through either signaling mechanisms or both, or through alternative signaling mechanisms. Different chemical toxicants were used to assess whether they dysregulate GJIC via MEK or PC-PLC, or both Mek and PC-PLC, or through other signaling pathways, using a pluripotent rat liver epithelial oval-cell line, WB-F344. Epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, thrombin receptor activating peptide-6 and lindane regulated GJIC through a MEK1/2-dependent mechanism that was independent of PC-PLC; whereas PAHs, DDT, PCB 153, dicumylperoxide and perfluorodecanoic acid inhibited GJIC through PC-PLC independent of Mek. Dysregulation of GJIC by perfluorooctanoic acid and R59022 required both MEK1/2 and PC-PLC; while benzoylperoxide, arachidonic acid, 18β-glycyrrhetinic acid, perfluorooctane sulfonic acid, 1-monolaurin, pentachlorophenol and alachlor required neither MEK1/2 nor PC-PLC. Resveratrol prevented dysregulation of GJIC by toxicants that acted either through MEK1/2 or PC-PLC. Except for alachlor, resveratrol did not prevent dysregulation of GJIC by toxicants that worked through PC-PLC-independent and MEK1/2-independent pathways, which indicated at least two other, yet unidentified, pathways that are involved in the regulation of GJIC. IN CONCLUSION: the dysregulation of GJIC is a contributing factor to the cancer process; however the underlying mechanisms by which gap junction channels are closed by toxicants vary. Thus, accurate assessments of risk posed by toxic agents, and the role of dietary phytochemicals play in preventing or reversing the effects of these agents must take into account the specific mechanisms involved in the cancer process.
- MeSH
- Principal Component Analysis MeSH
- Cell Line MeSH
- Butadienes pharmacology MeSH
- Phosphatidylcholines metabolism MeSH
- Type C Phospholipases metabolism MeSH
- Rats MeSH
- Gap Junctions drug effects metabolism MeSH
- Nitriles pharmacology MeSH
- Rats, Inbred F344 MeSH
- Bridged-Ring Compounds pharmacology MeSH
- Stilbenes pharmacology MeSH
- Thiones pharmacology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
The first indication of the aluminum (Al) toxicity in plants growing in acidic soils is the cessation of root growth, but the detailed mechanism of Al effect is unknown. Here we examined the impact of Al stress on the activity of non-specific phospholipase C (NPC) in the connection with the processes related to the plasma membrane using fluorescently labeled phosphatidylcholine. We observed a rapid and significant decrease of labeled diacylglycerol (DAG), product of NPC activity, in Arabidopsis seedlings treated with AlCl₃. Interestingly, an application of the membrane fluidizer, benzyl alcohol, restored the level of DAG during Al treatment. Our observations suggest that the activity of NPC is affected by Al-induced changes in plasma membrane physical properties.
- MeSH
- Arabidopsis drug effects enzymology MeSH
- Benzyl Alcohol pharmacology MeSH
- Cell Membrane drug effects metabolism MeSH
- Diglycerides metabolism MeSH
- Type C Phospholipases metabolism MeSH
- Aluminum pharmacology MeSH
- Ions MeSH
- Plant Roots drug effects metabolism MeSH
- Seedlings drug effects metabolism MeSH
- Boron Compounds metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Phosphatidylcholine-hydrolysing phospholipase C, also known as non-specific phospholipase C (NPC), is a new member of the plant phospholipase family that reacts to environmental stresses such as phosphate deficiency and aluminium toxicity, and has a role in root development and brassinolide signalling. Expression of NPC4, one of the six NPC genes in Arabidopsis, was highly induced by NaCl. Maximum expression was observed from 3 h to 6 h after the salt treatment and was dependent on salt concentration. Results of histochemical analysis of P(NPC4):GUS plants showed the localization of salt-induced expression in root tips. On the biochemical level, increased NPC enzyme activity, indicated by accumulation of diacylglycerol, was observed as early as after 30 min of salt treatment of Arabidopsis seedlings. Phenotype analysis of NPC4 knockout plants showed increased sensitivity to salinity as compared with wild-type plants. Under salt stress npc4 plants had shorter roots, lower fresh weight, and reduced seed germination. Expression levels of abscisic acid-related genes ABI1, ABI2, RAB18, PP2CA, and SOT12 were substantially reduced in salt-treated npc4 plants. These observations demonstrate a role for NPC4 in the response of Arabidopsis to salt stress.
- MeSH
- Arabidopsis drug effects enzymology genetics metabolism MeSH
- Sodium Chloride metabolism pharmacology MeSH
- Type C Phospholipases genetics metabolism physiology MeSH
- Plants, Genetically Modified MeSH
- Plant Roots drug effects enzymology genetics metabolism MeSH
- Abscisic Acid genetics metabolism MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Arabidopsis Proteins genetics metabolism physiology MeSH
- Gene Expression Regulation, Plant MeSH
- Signal Transduction MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) have been shown to act as tumor promoters in liver; however, the exact mechanisms of their action are still only partially understood. One of the interesting effects of NDL-PCBs is the acute inhibition of gap junctional intercellular communication (GJIC), an effect, which has been often found to be associated with tumor promotion. As previous studies have suggested that NDL-PCB-induced disruption of lipid signalling pathways might correspond with GJIC inhibition, we investigated effects of PCBs on the release of arachidonic acid (AA) in the rat liver epithelial WB-F344 cell line, a well-established model of liver progenitor cells. We found that both 2,2',4,4'-tetrachlorobiphenyl (PCB 47) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), but not the dioxin-like, non-ortho-substituted, 3,3',4,4',5-pentachlorobiphenyl (PCB 126), induce a massive release of AA. The AA release, induced by PCB 153, was partially inhibited by extracellular signal-regulated kinases 1/2 (ERK1/2) signalling inhibitor, U0126, and by cytosolic phospholipase A(2) (cPLA(2)) inhibitor, AACOCF(3). Although PCB 153 induced both ERK1/2 and p38 activation, the specific p38 kinase inhibitor, SB203580, had no effect on AA release. Inhibitors of other phospholipases, including phosphatidylcholine-specific phospholipase C or phosphatidylinositol-specific phospholipase C, were also without effect. Taken together, our findings suggest that the AA release, induced by non-dioxin-like PCBs in liver progenitor cell line, is partially mediated by cytosolic PLA(2) and regulated by ERK1/2 kinases. Our results suggest that more attention should be paid to cell signalling pathways regulated by AA or eicosanoids after PCB exposure, which might be involved in their toxic effects.
- MeSH
- Cell Line MeSH
- Phospholipases A2, Cytosolic metabolism drug effects MeSH
- Epithelial Cells metabolism drug effects MeSH
- Financing, Organized MeSH
- Liver cytology metabolism drug effects MeSH
- Stem Cells metabolism drug effects MeSH
- Rats MeSH
- Arachidonic Acids metabolism MeSH
- Environmental Pollutants toxicity MeSH
- Mitogen-Activated Protein Kinase 1 metabolism drug effects MeSH
- Mitogen-Activated Protein Kinase 3 metabolism drug effects MeSH
- Polychlorinated Biphenyls pharmacology toxicity MeSH
- Rats, Inbred F344 MeSH
- Signal Transduction drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH