repetitive sequence
Dotaz
Zobrazit nápovědu
MOTIVATION: Repetitive DNA makes up large portions of plant and animal nuclear genomes, yet it remains the least-characterized genome component in most species studied so far. Although the recent availability of high-throughput sequencing data provides necessary resources for in-depth investigation of genomic repeats, its utility is hampered by the lack of specialized bioinformatics tools and appropriate computational resources that would enable large-scale repeat analysis to be run by biologically oriented researchers. RESULTS: Here we present RepeatExplorer, a collection of software tools for characterization of repetitive elements, which is accessible via web interface. A key component of the server is the computational pipeline using a graph-based sequence clustering algorithm to facilitate de novo repeat identification without the need for reference databases of known elements. Because the algorithm uses short sequences randomly sampled from the genome as input, it is ideal for analyzing next-generation sequence reads. Additional tools are provided to aid in classification of identified repeats, investigate phylogenetic relationships of retroelements and perform comparative analysis of repeat composition between multiple species. The server allows to analyze several million sequence reads, which typically results in identification of most high and medium copy repeats in higher plant genomes.
- MeSH
- algoritmy MeSH
- DNA chemie MeSH
- Eukaryota genetika MeSH
- fylogeneze MeSH
- genom MeSH
- internet MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekvenční analýza DNA * MeSH
- shluková analýza MeSH
- software * MeSH
- vysoce účinné nukleotidové sekvenování * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Telomeres are nucleoprotein structures that distinguish native chromosomal ends from double-stranded breaks. They are maintained by telomerase that adds short G-rich telomeric repeats at chromosomal ends in most eukaryotes and determines the TnAmGo sequence of canonical telomeres. We employed an experimental approach that was based on detection of repeats added by telomerase to identify the telomere sequence type forming the very ends of chromosomes. Our previous studies that focused on the algal order Chlamydomonadales revealed several changes in telomere motifs that were consistent with the phylogeny and supported the concept of the Arabidopsis-type sequence being the ancestral telomeric motif for green algae. In addition to previously described independent transitions to the Chlamydomonas-type sequence, we report that the ancestral telomeric motif was replaced by the human-type sequence in the majority of algal species grouped within a higher order clade, Caudivolvoxa. The Arabidopsis-type sequence was apparently retained in the Polytominia clade. Regarding the telomere sequence, the Chlorogonia clade within Caudivolvoxa bifurcates into two groups, one with the human-type sequence and the other group with the Arabidopsis-type sequence that is solely formed by the Chlorogonium species. This suggests that reversion to the Arabidopsis-type telomeric motif occurred in the common ancestral Chlorogonium species. The human-type sequence is also synthesized by telomerases of algal strains from Arenicolinia, Dunaliellinia and Stephanosphaerinia, except a distinct subclade within Stephanosphaerinia, where telomerase activity was not detected and a change to an unidentified telomeric motif might arise. We discuss plausible reasons why changes in telomeric motifs were tolerated during evolution of green algae.
- MeSH
- aminokyselinové motivy genetika MeSH
- fylogeneze MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 18S genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- telomerasa genetika MeSH
- telomery genetika MeSH
- Volvocida genetika MeSH
- zkracování telomer genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.
- MeSH
- délka genomu * MeSH
- Fabaceae klasifikace genetika MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genom rostlinný * MeSH
- genomika * metody MeSH
- koncové repetice MeSH
- molekulární evoluce MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- reprodukovatelnost výsledků MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Lacertid lizards are a widely radiated group of squamate reptiles with long-term stable ZZ/ZW sex chromosomes. Despite their family-wide homology of Z-specific gene content, previous cytogenetic studies revealed significant variability in the size, morphology, and heterochromatin distribution of their W chromosome. However, there is little evidence about the accumulation and distribution of repetitive content on lacertid chromosomes, especially on their W chromosome. In order to expand our knowledge of the evolution of sex chromosome repetitive content, we examined the topology of telomeric and microsatellite motifs that tend to often accumulate on the sex chromosomes of reptiles in the karyotypes of 15 species of lacertids by fluorescence in situ hybridization (FISH). The topology of the above-mentioned motifs was compared to the pattern of heterochromatin distribution, as revealed by C-banding. Our results show that the topologies of the examined motifs on the W chromosome do not seem to follow a strong phylogenetic signal, indicating independent and species-specific accumulations. In addition, the degeneration of the W chromosome can also affect the Z chromosome and potentially also other parts of the genome. Our study provides solid evidence that the repetitive content of the degenerated sex chromosomes is one of the most evolutionary dynamic parts of the genome.
- MeSH
- chromozomy genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- heterochromatin genetika ultrastruktura MeSH
- hybridizace in situ fluorescenční MeSH
- ještěři genetika MeSH
- karyotyp MeSH
- mikrosatelitní repetice genetika MeSH
- molekulární evoluce * MeSH
- nukleotidové motivy MeSH
- pohlavní chromozomy genetika MeSH
- pruhování chromozomů MeSH
- repetitivní sekvence nukleových kyselin MeSH
- telomery genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
AIMS: The aim of this study was to develop a simple protocol for a PCR-based fingerprinting of Stenotrophomonas maltophilia (SmrepPCR) that utilizes primers complementary to repetitive extragenic palindromic elements (REPs) of this micro-organism. METHODS AND RESULTS: The relatedness of 34 isolates of environmental and clinical origin was investigated by two SmrepPCRs with two different primers, gyrB sequencing and XbaI macrorestriction followed by pulsed-field gel electrophoresis. While SmrepPCR (with primer DIR) results matched data obtained from the analysis of gyrB nucleotide sequences and identified several clonal complexes, XbaI macrorestriction showed high level of heterogeneity between isolates. The macrorestriction-based clustering of isolates did not correspond to both gyrB and DIR-SmrepPCR grouping. CONCLUSIONS: Our results show that SmrepPCR-inferred relationship of isolates is in a good agreement with sequence-based methods. The combined information from all methods used suggests that rapid evolution of S. maltophilia genomes might be predominantly due to high rate of rearrangements caused by mobile genetic elements. SIGNIFICANCE AND IMPACT OF THE STUDY: The presented method is an inexpensive and easy to perform alternative to genotype S. maltophilia isolates and to study their population genetics. SmrepPCR demonstrates the usefulness of species-specific repetitive elements in genomic analyses.
- MeSH
- DNA bakterií analýza genetika MeSH
- DNA fingerprinting MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- lidé MeSH
- obrácené repetice MeSH
- polymerázová řetězová reakce metody MeSH
- pulzní gelová elektroforéza MeSH
- Stenotrophomonas maltophilia genetika izolace a purifikace MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Allopolyploidy has played an important role in the evolution of the flowering plants. Genome mergers are often accompanied by significant and rapid alterations of genome size and structure via chromosomal rearrangements and altered dynamics of tandem and dispersed repetitive DNA families. Recent developments in sequencing technologies and bioinformatic methods allow for a comprehensive investigation of the repetitive component of plant genomes. Interpretation of evolutionary dynamics following allopolyploidization requires both the knowledge of parentage and the age of origin of an allopolyploid. Whereas parentage is typically inferred from cytogenetic and phylogenetic data, age inference is hampered by the reticulate nature of the phylogenetic relationships. Treating subgenomes of allopolyploids as if they belonged to different species (i.e., no recombination among subgenomes) and applying cross-bracing (i.e., putting a constraint on the age difference of nodes pertaining to the same event), we can infer the age of allopolyploids within the framework of the multispecies coalescent within BEAST2. Together with a comprehensive characterization of the repetitive DNA fraction using the RepeatExplorer pipeline, we apply the dating approach in a group of closely related allopolyploids and their progenitor species in the plant genus Melampodium (Asteraceae). We dated the origin of both the allotetraploid, Melampodium strigosum, and its two allohexaploid derivatives, Melampodium pringlei and Melampodium sericeum, which share both parentage and the direction of the cross, to the Pleistocene ($<$1.4 Ma). Thus, Pleistocene climatic fluctuations may have triggered formation of allopolyploids possibly in short intervals, contributing to difficulties in inferring the precise temporal order of allopolyploid species divergence of M. sericeum and M. pringlei. The relatively recent origin of the allopolyploids likely played a role in the near-absence of major changes in the repetitive fraction of the polyploids' genomes. The repetitive elements most affected by the postpolyploidization changes represented retrotransposons of the Ty1-copia lineage Maximus and, to a lesser extent, also Athila elements of Ty3-gypsy family.
BACKGROUND: Bacterial repetitive extragenic palindromes (REPs) compose a distinct group of genomic repeats. They usually occur in high abundance (>100 copies/genome) and are often arranged in composite repetitive structures - bacterial interspersed mosaic elements (BIMEs). In BIMEs, regularly spaced REPs are present in alternating orientations. BIMEs and REPs have been shown to serve as binding sites for several proteins and suggested to play role in chromosome organization and transcription termination. Their origins are, at present, unknown. RESULTS: In this report, we describe a novel class of putative transposases related to IS200/IS605 transposase family and we demonstrate that they are obligately associated with bacterial REPs. Open reading frames coding for these REP-associated tyrosine transposases (RAYTs) are always flanked by two REPs in inverted orientation and thus constitute a unit reminiscent of typical transposable elements. Besides conserved residues involved in catalysis of DNA cleavage, RAYTs carry characteristic structural motifs that are absent in typical IS200/IS605 transposases. DNA sequences flanking rayt genes are in one third of examined cases arranged in modular BIMEs. RAYTs and their flanking REPs apparently coevolve with each other. The rayt genes themselves are subject to rapid evolution, substantially exceeding the substitution rate of neighboring genes. Strong correlation was found between the presence of a particular rayt in a genome and the abundance of its cognate REPs. CONCLUSIONS: In light of our findings, we propose that RAYTs are responsible for establishment of REPs and BIMEs in bacterial genomes, as well as for their exceptional dynamics and species-specifity. Conversely, we suggest that BIMEs are in fact a special type of nonautonomous transposable elements, mobilizable by RAYTs.
- MeSH
- Bacteria genetika chemie MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- konzervovaná sekvence MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- obrácené repetice MeSH
- otevřené čtecí rámce MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- transposasy analýza genetika chemická syntéza metabolismus MeSH
- tyrosin metabolismus MeSH
- Publikační typ
- práce podpořená grantem MeSH
BACKGROUND: The banana family (Musaceae) includes genetically a diverse group of species and their diploid and polyploid hybrids that are widely cultivated in the tropics. In spite of their socio-economic importance, the knowledge of Musaceae genomes is basically limited to draft genome assemblies of two species, Musa acuminata and M. balbisiana. Here we aimed to complement this information by analyzing repetitive genome fractions of six species selected to represent various phylogenetic groups within the family. RESULTS: Low-pass sequencing of M. acuminata, M. ornata, M. textilis, M. beccarii, M. balbisiana, and Ensete gilletii genomes was performed using a 454/Roche platform. Sequence reads were subjected to analysis of their overall intra- and inter-specific similarities and, all major repeat families were quantified using graph-based clustering. Maximus/SIRE and Angela lineages of Ty1/copia long terminal repeat (LTR) retrotransposons and the chromovirus lineage of Ty3/gypsy elements were found to make up most of highly repetitive DNA in all species (14-34.5% of the genome). However, there were quantitative differences and sequence variations detected for classified repeat families as well as for the bulk of total repetitive DNA. These differences were most pronounced between species from different taxonomic sections of the Musaceae family, whereas pairs of closely related species (M. acuminata/M. ornata and M. beccarii/M. textilis) shared similar populations of repetitive elements. CONCLUSIONS: This study provided the first insight into the composition and sequence variation of repetitive parts of Musaceae genomes. It allowed identification of repetitive sequences specific for a single species or a group of species that can be utilized as molecular markers in breeding programs and generated computational resources that will be instrumental in repeat masking and annotation in future genome assembly projects.
- MeSH
- banánovníkovité klasifikace genetika MeSH
- DNA rostlinná analýza genetika MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom rostlinný * MeSH
- molekulární evoluce MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekvenční analýza DNA MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this study, we investigated repetitive sequences localized on Y chromosomes. Repetitive DNA sequences represent a substantial part of the eukaryotic genome and, among them, a large portion comprises sequences repeated in tandem. Efficient and rapid isolation of repeat units is possible due to a laser microdissection technique used for Y chromosome separation, followed by polymerase chain reaction (PCR), cloning, and sequence analysis. We applied the derived repeat units to members of nine tribes within the Bovidae. Apart from the Y chromosomes of Bos taurus and Bubalus bubalis, where we used known sequences of repetition, the derived sequences were used as probes for fluorescent in situ cross-hybridization to members of the nine tribes of the Bovidae. We investigated the distribution of repeat units within the tribes and their localization on the Y chromosome. Sharing of sequence variants would indicate common descent, while the rapid horizontal evolution should allow discrimination between closely related species or subspecies.
- MeSH
- chromozom Y chemie genetika MeSH
- druhová specificita MeSH
- fluorescenční barviva chemie MeSH
- fylogeneze MeSH
- hybridizace in situ fluorescenční veterinární MeSH
- laserová záchytná mikrodisekce metody veterinární MeSH
- metafáze MeSH
- molekulární evoluce MeSH
- populační genetika metody MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA metody veterinární MeSH
- sekvenční seřazení MeSH
- sexuální faktory MeSH
- skot klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- skot klasifikace genetika MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study examined the sequences of the two rRNA (rrn) operons of pathogenic non-cultivable treponemes, comprising 11 strains of T. pallidum ssp. pallidum (TPA), five strains of T. pallidum ssp. pertenue (TPE), two strains of T. pallidum ssp. endemicum (TEN), a simian Fribourg-Blanc strain and a rabbit T. paraluiscuniculi (TPc) strain. PCR was used to determine the type of 16S-23S ribosomal intergenic spacers in the rrn operons from 30 clinical samples belonging to five different genotypes. When compared with the TPA strains, TPc Cuniculi A strain had a 17 bp deletion, and the TPE, TEN and Fribourg-Blanc isolates had a deletion of 33 bp. Other than these deletions, only 17 heterogeneous sites were found within the entire region (excluding the 16S-23S intergenic spacer region encoding tRNA-Ile or tRNA-Ala). The pattern of nucleotide changes in the rrn operons corresponded to the classification of treponemal strains, whilst two different rrn spacer patterns (Ile/Ala and Ala/Ile) appeared to be distributed randomly across species/subspecies classification, time and geographical source of the treponemal strains. It is suggested that the random distribution of tRNA genes is caused by reciprocal translocation between repetitive sequences mediated by a recBCD-like system.
- MeSH
- DNA bakterií chemie genetika MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom bakteriální MeSH
- genotyp MeSH
- mezerníky ribozomální DNA genetika MeSH
- molekulární sekvence - údaje MeSH
- RNA ribozomální 16S genetika MeSH
- RNA ribozomální 23S genetika MeSH
- rRNA Operon * MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční delece MeSH
- Treponema pallidum klasifikace genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH