Although the cat flea, Ctenocephalides felis, has been identified as the primary vector of Rickettsia felis, additional flea, tick, mite, and louse species have also been associated with this bacterium by molecular means; however, the role of these arthropods in the transmission of R. felis has not been clarified. Here, we succeeded in culture isolation of R. felis from a host-seeking castor bean tick, Ixodes ricinus, the most common tick in Slovakia. The bacterial isolation was performed on XTC-2 cells at 28 °C using the shell-vial technique. An evaluation of the growth properties was performed for both the XTC-2 and Vero cell lines. We observed R. felis in the infected host cells microscopically by Gimenez staining and immunofluorescence assay. The R. felis isolate was purified by gradient ultracentrifugation and visualized by electron microscopy. Fragments of the genes gltA, ompA, ompB, htrA, rpoB, sca4, rffE, and rrs were amplified and compared with the corresponding sequences of the type strain URRWXCal2 and other R. felis culture -isolated strains. We did not detect any nucleotide polymorphisms; however, plasmid pRFδ, characteristic of the standard strain, was absent in our isolate. Herein, we describe the first successful isolation and characterization of a tick-derived R. felis strain "Danube", obtained from an I. ricinus nymph.
- MeSH
- Cell Line MeSH
- Arthropods * MeSH
- Ixodes * microbiology MeSH
- Rickettsia felis * genetics MeSH
- Rickettsia * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Recently, a new rickettsia named 'Candidatus Rickettsia vini' belonging to the spotted fever group has been molecularly detected in Ixodes arboricola ticks in Spain, the Czech Republic, Slovakia and Turkey, with prevalence reaching up to 100 %. The aim of this study was to isolate this rickettsia in pure culture, and to describe it as a new Rickettsia species. METHODS: A total of 148 ornitophilic nidicolous ticks Ixodes arboricola were collected in a forest near Breclav (Czech Republic) and examined for rickettsiae. Shell vial technique was applied to isolate rickettsiae in Vero cells. Rickettsial isolation was confirmed by optical microscopy and sequencing of partial sequences of the rickettsial genes gltA, ompA, ompB, and htrA. Laboratory guinea pigs and chickens were used for experimental infestations and infections. Animal blood sera were tested by immunofluorescence assay employing crude antigens of various rickettsiae. RESULTS: Rickettsia vini n. sp. was successfully isolated from three males of I. arboricola. Phylogenetic analysis of fragments of 1092, 590, 800, and 497 nucleotides of the gltA, ompA, ompB, and htrA genes, respectively, showed closest proximity of R. vini n. sp. to Rickettsia japonica and Rickettsia heilongjiangensis belonging to the spotted fever group. Experimental infection of guinea pigs and chickens with R. vini led to various levels of cross-reactions of R. vini-homologous antibodies with Rickettsia rickettsii, Rickettsia parkeri, 'Candidatus Rickettsia amblyommii', Rickettsia rhipicephali, Rickettsia bellii, and Rickettsia felis. Laboratory infestations by R. vini-infected I. arboricola larvae on chickens led to no seroconversion to R. vini n. sp., nor cross-reactions with R. rickettsii, R. parkeri, 'Ca. R. amblyommii', R. rhipicephali, R. bellii or R. felis. CONCLUSIONS: Our results suggest that R. vini n. sp. is possibly a tick endosymbiont, not pathogenic for guinea pigs and chickens. Regarding specific phenotypic characters and significant differences of DNA sequences in comparison to the most closely related species (R. japonica and R. heilongjiangensis), we propose to classify the isolate as a new species, Rickettsia vini.
- MeSH
- Chlorocebus aethiops MeSH
- Phylogeny MeSH
- Genotype MeSH
- Host-Pathogen Interactions MeSH
- Ixodes microbiology MeSH
- Chickens MeSH
- Guinea Pigs MeSH
- Poultry Diseases microbiology MeSH
- Rickettsia genetics isolation & purification MeSH
- Rickettsia Infections microbiology veterinary MeSH
- Vero Cells MeSH
- Animals MeSH
- Check Tag
- Guinea Pigs MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH