spatial segregation
Dotaz
Zobrazit nápovědu
Extramedullary disease (EMD) is a high-risk feature of multiple myeloma (MM) and remains a poor prognostic factor, even in the era of novel immunotherapies. Here, we applied spatial transcriptomics (RNA tomography for spatially resolved transcriptomics [tomo-seq] [n = 2] and 10x Visium [n = 12]) and single-cell RNA sequencing (n = 3) to a set of 14 EMD biopsies to dissect the 3-dimensional architecture of tumor cells and their microenvironment. Overall, infiltrating immune and stromal cells showed both intrapatient and interpatient variations, with no uniform distribution over the lesion. We observed substantial heterogeneity at the copy number level within plasma cells, including the emergence of new subclones in circumscribed areas of the tumor, which is consistent with genomic instability. We further identified the spatial expression differences between GPRC5D and TNFRSF17, 2 important antigens for bispecific antibody therapy. EMD masses were infiltrated by various immune cells, including T cells. Notably, exhausted TIM3+/PD-1+ T cells diffusely colocalized with MM cells, whereas functional and activated CD8+ T cells showed a focal infiltration pattern along with M1 macrophages in tumor-free regions. This segregation of fit and exhausted T cells was resolved in the case of response to T-cell-engaging bispecific antibodies. MM and microenvironment cells were embedded in a complex network that influenced immune activation and angiogenesis, and oxidative phosphorylation represented the major metabolic program within EMD lesions. In summary, spatial transcriptomics has revealed a multicellular ecosystem in EMD with checkpoint inhibition and dual targeting as potential new therapeutic avenues.
The unicellular parasite Leishmania has a precisely defined cell architecture that is inherited by each subsequent generation, requiring a highly coordinated pattern of duplication and segregation of organelles and cytoskeletal structures. A framework of nuclear division and morphological changes is known from light microscopy, yet this has limited resolution and the intrinsic organisation of organelles within the cell body and their manner of duplication and inheritance is unknown. Using volume electron microscopy approaches, we have produced three-dimensional reconstructions of different promastigote cell cycle stages to give a spatial and quantitative overview of organelle positioning, division and inheritance. The first morphological indications seen in our dataset that a new cell cycle had begun were the assembly of a new flagellum, the duplication of the contractile vacuole and the increase in volume of the nucleus and kinetoplast. We showed that the progression of the cytokinesis furrow created a specific pattern of membrane indentations, while our analysis of sub-pellicular microtubule organisation indicated that there is likely a preferred site of new microtubule insertion. The daughter cells retained these indentations in their cell body for a period post-abscission. By comparing cultured and sand fly derived promastigotes, we found an increase in the number and overall volume of lipid droplets in the promastigotes from the sand fly, reflecting a change in their metabolism to ensure transmissibility to the mammalian host. Our insights into the cell cycle mechanics of Leishmania will support future molecular cell biology analyses of these parasites.
- MeSH
- buněčné dělení MeSH
- buněčný cyklus MeSH
- Leishmania mexicana * genetika MeSH
- Leishmania * MeSH
- paraziti * MeSH
- Psychodidae * parazitologie MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Recognition memory is the ability to recognize previously encountered objects. Even this relatively simple, yet extremely fast, ability requires the coordinated activity of large-scale brain networks. However, little is known about the sub-second dynamics of these networks. The majority of current studies into large-scale network dynamics is primarily based on imaging techniques suffering from either poor temporal or spatial resolution. We investigated the dynamics of large-scale functional brain networks underlying recognition memory at the millisecond scale. Specifically, we analyzed dynamic effective connectivity from intracranial electroencephalography while epileptic subjects (n = 18) performed a fast visual recognition memory task. Our data-driven investigation using Granger causality and the analysis of communities with the Louvain algorithm spotlighted a dynamic interplay of two large-scale networks associated with successful recognition. The first network involved the right visual ventral stream and bilateral frontal regions. It was characterized by early, predominantly bottom-up information flow peaking at 115 ms. It was followed by the involvement of another network with predominantly top-down connectivity peaking at 220 ms, mainly in the left anterior hemisphere. The transition between these two networks was associated with changes in network topology, evolving from a more segregated to a more integrated state. These results highlight that distinct large-scale brain networks involved in visual recognition memory unfold early and quickly, within the first 300 ms after stimulus onset. Our study extends the current understanding of the rapid network changes during rapid cognitive processes.
Preimplantation mouse embryo development involves temporal-spatial specification and segregation of three blastocyst cell lineages: trophectoderm, primitive endoderm and epiblast. Spatial separation of the outer-trophectoderm lineage from the two other inner-cell-mass (ICM) lineages starts with the 8- to 16-cell transition and concludes at the 32-cell stages. Accordingly, the ICM is derived from primary and secondary contributed cells; with debated relative EPI versus PrE potencies. We report generation of primary but not secondary ICM populations is highly dependent on temporal activation of mammalian target of Rapamycin (mTOR) during 8-cell stage M-phase entry, mediated via regulation of the 7-methylguanosine-cap (m7G-cap)-binding initiation complex (EIF4F) and linked to translation of mRNAs containing 5' UTR terminal oligopyrimidine (TOP-) sequence motifs, as knockdown of identified TOP-like motif transcripts impairs generation of primary ICM founders. However, mTOR inhibition-induced ICM cell number deficits in early blastocysts can be compensated by the late blastocyst stage, after inhibitor withdrawal; compensation likely initiated at the 32-cell stage when supernumerary outer cells exhibit molecular characteristics of inner cells. These data identify a novel mechanism specifically governing initial spatial segregation of mouse embryo blastomeres, that is distinct from those directing subsequent inner cell formation, contributing to germane segregation of late blastocyst lineages.
- MeSH
- blastocysta * MeSH
- buněčná diferenciace fyziologie MeSH
- buněčný rodokmen MeSH
- embryo savčí * MeSH
- mTORC1 MeSH
- myši MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The hippocampus plays a crucial role in the formation and retrieval of spatial memory across mammals and episodic memory in humans. Episodic and spatial memories can be retrieved irrespective of the subject's awake behavioral state and independently of its actual spatial context. However, the nature of hippocampal network activity during such out-context retrieval has not been described so far. Theoretically, context-independent spatial memory retrieval suggests a shift of the hippocampal spatial representations from coding the current spatial context to coding the remembered environment. In this study we show in rats that the CA3 neuronal population can switch spontaneously across representations and transiently activate another stored familiar spatial pattern without direct external sensory cuing. This phenomenon qualitatively differs from the well-described sharp wave-related pattern reactivations during immobility. Here, it occurs under the theta oscillatory state during active exploration and reflects the preceding experience of sudden environmental change. The respective out-context coding spikes appeared later in the theta cycle than the in-context ones. Finally, the experience also induced the emergence of population vectors with a co-expression of both codes segregated into different phases of the theta cycle.
- MeSH
- epizodická paměť * MeSH
- hipokampus MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- plži * MeSH
- podněty MeSH
- prostorová paměť MeSH
- rozpomínání MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
... -- Foreword 7 -- List of Contributors 9 -- 1/ Prague and the Central Bohemian Region: Main Socio-spatial ... ... Typology of Municipalities in the Central Bohemian Region -- (Martin Ouředníček, Jiří Nemeškal) 25 -- 3/ Spatial ... ... the Central Bohemian Region -- (Ivana Křížková, Adam Klsák, Martin Šimon) 59 -- 5/ Residential Segregation ...
1. elektronické vydání 1 online zdroj (170 stran)
Tau is an intrinsically disordered microtubule-associated protein (MAP) implicated in neurodegenerative disease. On microtubules, tau molecules segregate into two kinetically distinct phases, consisting of either independently diffusing molecules or interacting molecules that form cohesive 'envelopes' around microtubules. Envelopes differentially regulate lattice accessibility for other MAPs, but the mechanism of envelope formation remains unclear. Here we find that tau envelopes form cooperatively, locally altering the spacing of tubulin dimers within the microtubule lattice. Envelope formation compacted the underlying lattice, whereas lattice extension induced tau envelope disassembly. Investigating other members of the tau family, we find that MAP2 similarly forms envelopes governed by lattice spacing, whereas MAP4 cannot. Envelopes differentially biased motor protein movement, suggesting that tau family members could spatially divide the microtubule surface into functionally distinct regions. We conclude that the interdependent allostery between lattice spacing and cooperative envelope formation provides the molecular basis for spatial regulation of microtubule-based processes by tau and MAP2.
- MeSH
- lidé MeSH
- mikrotubuly metabolismus MeSH
- neurodegenerativní nemoci * metabolismus MeSH
- proteiny asociované s mikrotubuly metabolismus MeSH
- proteiny tau * metabolismus MeSH
- proteiny metabolismus MeSH
- tubulin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Specialized clinical care for cystic fibrosis (CF) in Cyprus, a small island country, has been implemented since the 1990s. However, only recently, a national CF patient registry has been established for the systematic recording of patients' data. In this study, we aim to present data on the epidemiological, genotypic and phenotypic features of CF patients in the country from the most recent data collection in 2019, with particular emphasis on notable rare or unique cases. RESULTS: Overall, data from 52 patients are presented, 5 of whom have deceased and 13 have been lost to follow-up in previous years. The mean age at diagnosis was 7.2 ± 12.3 years, and the mean age of 34 alive patients by the end of 2019 was 22.6 ± 13.2 years. Patients most commonly presented at diagnosis with acute or persistent respiratory symptoms (46.2%), failure to thrive or malnutrition (40.4%), and dehydration or electrolyte imbalance (32.7%). Sweat chloride levels were diagnostic (above 60 mmol/L) in 81.8% of examined patients. The most common identified mutation was p.Phe508del (F508del) (45.2%), followed by p.Leu346Pro (L346P) (6.7%), a mutation detected solely in individuals of Cypriot descent. The mean BMI and FEV1 z-scores were 0.2 ± 1.3 and - 2.1 ± 1.7 across all age groups, respectively, whereas chronic Pseudomonas aeruginosa colonization was noted in 26.9% of patients. The majority of patients (74.5%) were eligible to receive at least one of the available CFTR modulator therapies. In 25% of patients we recovered rare or unique genotypic profiles, including the endemic p.Leu346Pro (L346P), the rare CFTR-dup2, the co-segregated c.4200_4201delTG/c.489 + 3A > G, and the polymorphism p.Ser877Ala. CONCLUSIONS: CF patient registries are particularly important in small or isolated populations, such as in Cyprus, with rare or unique disease cases. Their operation is necessary for the optimization of clinical care provided to CF patients, enabling their majority to benefit from evolving advances in precision medicine.
- MeSH
- cystická fibróza * genetika MeSH
- demografie MeSH
- dítě MeSH
- dospělí MeSH
- laboratoře MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutace genetika MeSH
- protein CFTR * genetika MeSH
- registrace MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane.
- MeSH
- bakteriální proteiny metabolismus MeSH
- buněčná membrána metabolismus MeSH
- Clostridioides difficile růst a vývoj metabolismus MeSH
- kardiolipiny metabolismus MeSH
- membránové lipidy metabolismus MeSH
- proteiny buněčného cyklu metabolismus MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
The spatial organization and dynamic interactions between excitatory and inhibitory synaptic inputs that define the receptive field (RF) of simple cells in the cat primary visual cortex (V1) still raise the following paradoxical issues: (1) stimulation of simple cells in V1 with drifting gratings supports a wiring schema of spatially segregated sets of excitatory and inhibitory inputs activated in an opponent way by stimulus contrast polarity and (2) in contrast, intracellular studies using flashed bars suggest that although ON and OFF excitatory inputs are indeed segregated, inhibitory inputs span the entire RF regardless of input contrast polarity. Here, we propose a biologically detailed computational model of simple cells embedded in a V1-like network that resolves this seeming contradiction. We varied parametrically the RF-correlation-based bias for excitatory and inhibitory synapses and found that a moderate bias of excitatory neurons to synapse onto other neurons with correlated receptive fields and a weaker bias of inhibitory neurons to synapse onto other neurons with anticorrelated receptive fields can explain the conductance input, the postsynaptic membrane potential, and the spike train dynamics under both stimulation paradigms. This computational study shows that the same structural model can reproduce the functional diversity of visual processing observed during different visual contexts.SIGNIFICANCE STATEMENT Identifying generic connectivity motives in cortical circuitry encoding for specific functions is crucial for understanding the computations implemented in the cortex. Indirect evidence points to correlation-based biases in the connectivity pattern in V1 of higher mammals, whereby excitatory and inhibitory neurons preferentially synapse onto neurons respectively with correlated and anticorrelated receptive fields. A recent intracellular study questions this push-pull hypothesis, failing to find spatial anticorrelation patterns between excitation and inhibition across the receptive field. We present here a spiking model of V1 that integrates relevant anatomic and physiological constraints and shows that a more versatile motif of correlation-based connectivity with selectively tuned excitation and broadened inhibition is sufficient to account for the diversity of functional descriptions obtained for different classes of stimuli.
- MeSH
- akční potenciály fyziologie MeSH
- kočky MeSH
- modely neurologické * MeSH
- nervový přenos fyziologie MeSH
- nervový útlum fyziologie MeSH
- neurony fyziologie MeSH
- synapse fyziologie MeSH
- zraková percepce fyziologie MeSH
- zrakové dráhy fyziologie MeSH
- zrakové korové centrum fyziologie MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH