Intralipid, a clinically used lipid emulsion, was reportedly utilized as one strategy to suppress off-target delivery of anticancer nanomedicines; Intralipid also effectively improved drug delivery to tumors and produced better therapeutic effects. However, the mechanisms involved-the why and how-in Intralipid's facilitation of delivery of nanomedicines to tumors have not yet been reported in detail. In this study, we investigated Intralipid and discovered the beneficial effects of Intralipid pretreatment when using three anticancer nanomedicines, including the clinically approved drug doxorubicin (Doxil). Intralipid pretreatment induced a 40% reduction in liver uptake of a polymeric nanoprobe used in photodynamic therapy as well as a 1.5-fold-increased nanomedicine accumulation in tumors. This increased accumulation consequently led to significantly better therapeutic effects, and this finding was validated by using Doxil. As an interesting result, Intralipid pretreatment significantly prolonged the plasma half-life of nanomedicines in normal healthy mice but not in tumor-bearing mice, which suggests that tumors become an alternative route of nanomedicine delivery when liver delivery is suppressed. Also, we found markedly increased tumor blood flow, as measured by fluorescence angiography, and significantly lower blood viscosity after Intralipid pretreatment. All our results together indicate that Intralipid treatment not only suppressed off-target nanomedicine delivery by the reticuloendothelial system, but more important, it enhanced nanomedicine delivery to tumors by improving tumor blood flow, which is key to satisfactory drug delivery via the enhanced permeability and retention effect. Significantly better therapeutic outcomes were thus achieved by the strategy of combining utilization of nanomedicines and Intralipid pretreatment. STATEMENT OF SIGNIFICANCE: Off-target delivery to organs such as the liver and obstructed tumor blood flow as is often seen in advanced cancers are major barriers to the therapeutic efficacy of anticancer nanomedicines. Intralipid has been shown effective for suppressing nanomedicine accumulation in the liver, resulting in improved anticancer effects. Unraveling the mechanisms involved in this process will be greatly helpful for the clinical application of anticancer nanomedicines. We reported here that Intralipid could also significantly increase tumor delivery of nanomedicine, which is beneficial for improving tumor blood flow and lowering blood viscosity. To our knowledge, this is the first study to investigate the role of Intralipid in this regard. This knowledge provides a solid rationale for the use of Intralipid in combination with anticancer nanomedicines.
- MeSH
- emulze MeSH
- fosfolipidy MeSH
- lékové transportní systémy MeSH
- myši MeSH
- nádory * farmakoterapie MeSH
- nanomedicína MeSH
- protinádorové látky * farmakologie terapeutické užití MeSH
- sójový olej MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tumor-targeted photodynamic therapy (PDT) using polymeric photosensitizers is a promising therapeutic strategy for cancer treatment. In this study, we synthesized a pHPMA conjugated pyropheophorbide-a (P-PyF) as a cancer theranostic agent for PDT and photodynamic diagnostics (PDD). Pyropheophorbide-a has one carboxyl group which was conjugated to pHPMA via amide bond yielding the intended product with high purity. In aqueous solutions, P-PyF showed a mean particle size of ∼200 nm as it forms micelle which exhibited fluorescence quenching and thus very little singlet oxygen (1O2) production. In contrast, upon disruption of micelle strong fluorescence and 1O2 production were observed. In vitro study clearly showed the PDT effect of P-PyF. More potent 1O2 production and PDT effect were observed during irradiation at ∼420 nm, the maximal absorbance of pyropheophorbide-a, than irradiation at longer wavelength (i.e., ∼680 nm), suggesting selection of proper absorption light is essential for successful PDT. In vivo study showed high tumor accumulation of P-PyF compared with most of normal tissues due to the enhanced permeability and retention (EPR) effect, which resulting in superior antitumor effect under irradiation using normal xenon light source of endoscope, and clear tumor imaging profiles even in the metastatic lung cancer at 28 days after administration of P-PyF. On the contrary irradiation using long wavelength (i.e., ∼680 nm), the lowest Q-Band, exhibited remarkable tumor imaging effect with little autofluorescence of background. These findings strongly suggested P-PyF may be a potential candidate-drug for PDT/PDD, particularly using two different wavelength for treatment and detection/imaging, respectively.
- MeSH
- časové faktory MeSH
- chlorofyl aplikace a dávkování analogy a deriváty farmakokinetika MeSH
- fluorescence MeSH
- fotochemoterapie metody MeSH
- fotosenzibilizující látky aplikace a dávkování MeSH
- kyseliny polymethakrylové chemie MeSH
- micely MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádory plic diagnóza farmakoterapie MeSH
- permeabilita MeSH
- polymery chemie MeSH
- teranostická nanomedicína metody MeSH
- tkáňová distribuce MeSH
- velikost částic MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH