The identification and isolation of genes underlying quantitative trait loci (QTLs) associated with agronomic traits in crops have been recently accelerated thanks to next-generation sequencing (NGS)-based technologies combined with plant genetics. With NGS, various revisited genetic approaches, which benefited from higher marker density, have been elaborated. These approaches improved resolution in QTL position and assisted in determining functional causative variations in genes. Examples of QTLs/genes associated with agronomic traits in crops and identified using different strategies based on whole-genome sequencing (WGS)/whole-genome resequencing (WGR) or RNA-seq are presented and discussed in this review. More specifically, we summarize and illustrate how NGS boosted bulk-segregant analysis (BSA), expression profiling, and the construction of polymorphism databases to facilitate the detection of QTLs and causative genes.
Leaf traits are often strongly correlated with yield, which poses a major challenge in rice breeding. In the present study, using a panel of Vietnamese rice landraces genotyped with 21,623 single-nucleotide polymorphism markers, a genome-wide association study (GWAS) was conducted for several leaf traits during the vegetative stage. Vietnamese landraces are often poorly represented in panels used for GWAS, even though they are adapted to contrasting agrosystems and can contain original, valuable genetic determinants. A panel of 180 rice varieties was grown in pots for four weeks with three replicates under nethouse conditions. Different leaf traits were measured on the second fully expanded leaf of the main tiller, which often plays a major role in determining the photosynthetic capacity of the plant. The leaf fresh weight, turgid weight and dry weight were measured; then, from these measurements, the relative tissue weight and leaf dry matter percentage were computed. The leaf dry matter percentage can be considered a proxy for the photosynthetic efficiency per unit leaf area, which contributes to yield. By a GWAS, thirteen QTLs associated with these leaf traits were identified. Eleven QTLs were identified for fresh weight, eleven for turgid weight, one for dry weight, one for relative tissue weight and one for leaf dry matter percentage. Eleven QTLs presented associations with several traits, suggesting that these traits share common genetic determinants, while one QTL was specific to leaf dry matter percentage and one QTL was specific to relative tissue weight. Interestingly, some of these QTLs colocalize with leaf- or yield-related QTLs previously identified using other material. Several genes within these QTLs with a known function in leaf development or physiology are reviewed.
- MeSH
- celogenomová asociační studie MeSH
- chromozomy rostlin genetika MeSH
- fenotyp MeSH
- genotyp MeSH
- jedlá semena genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- listy rostlin genetika MeSH
- lokus kvantitativního znaku genetika MeSH
- mapování chromozomů metody MeSH
- rýže (rod) genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Vietnam MeSH
CONTEXT: Yield improvement is an important issue for rice breeding. Panicle architecture is one of the key components of rice yield and exhibits a large diversity. To identify the morphological and genetic determinants of panicle architecture, we performed a detailed phenotypic analysis and a genome-wide association study (GWAS) using an original panel of Vietnamese landraces. RESULTS: Using a newly developed image analysis tool, morphological traits of the panicles were scored over two years: rachis length; primary, secondary and tertiary branch number; average length of primary and secondary branches; average length of internode on rachis and primary branch. We observed a high contribution of spikelet number and secondary branch number per panicle to the overall phenotypic diversity in the dataset. Twenty-nine stable QTLs associated with seven traits were detected through GWAS over the two years. Some of these QTLs were associated with genes already implicated in panicle development. Importantly, the present study revealed the existence of new QTLs associated with the spikelet number, secondary branch number and primary branch number traits. CONCLUSIONS: Our phenotypic analysis of panicle architecture variation suggests that with the panel of samples used, morphological diversity depends largely on the balance between indeterminate vs. determinate axillary meristem fate on primary branches, supporting the notion of differences in axillary meristem fate between rachis and primary branches. Our genome-wide association study led to the identification of numerous genomic sites covering all the traits studied and will be of interest for breeding programs aimed at improving yield. The new QTLs detected in this study provide a basis for the identification of new genes controlling panicle development and yield in rice.
- MeSH
- celogenomová asociační studie * MeSH
- fenotyp MeSH
- genotypizační techniky MeSH
- květy anatomie a histologie genetika růst a vývoj MeSH
- lokus kvantitativního znaku genetika MeSH
- meristém anatomie a histologie genetika růst a vývoj MeSH
- rýže (rod) anatomie a histologie genetika růst a vývoj MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH