The overexpression of MYC genes is frequently found in many human cancers, including adult and pediatric malignant brain tumors. Targeting MYC genes continues to be challenging due to their undruggable nature. Using our prediction algorithm, the nine-amino-acid activation domain (9aaTAD) has been identified in all four Yamanaka factors, including c-Myc. The predicted activation function was experimentally demonstrated for all these short peptides in transactivation assay. We generated a set of c-Myc constructs (1-108, 69-108 and 98-108) in the N-terminal regions and tested their ability to initiate transcription in one hybrid assay. The presence and absence of 9aaTAD (region 100-108) in the constructs strongly correlated with their activation functions (5-, 3- and 67-times respectively). Surprisingly, we observed co-activation function of the myc region 69-103, called here acetyl-TAD, previously described by Faiola et al. (Mol Cell Biol 25:10220-10234, 2005) and characterized in this study as a new domain collaborating with the 9aaTAD. We discovered strong interactions on a nanomolar scale between the Myc-9aaTAD activation domains and the KIX domain of CBP coactivator. We showed conservation of the 9aaTADs in the MYC family. In summary for the c-Myc oncogene, the acetyl-TAD and the 9aaTAD domains jointly mediated activation function. The c-Myc protein is largely intrinsically disordered and therefore difficult to target with small-molecule inhibitors. For the c-Myc driven tumors, the strong c-Myc interaction with the KIX domain represents a promising druggable target.
- MeSH
- aktivace transkripce MeSH
- lidé MeSH
- proteinové domény MeSH
- protoonkogenní proteiny c-myc * metabolismus genetika MeSH
- sekvence aminokyselin MeSH
- vazba proteinů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Recent studies have underscored the importance of gamma-delta (γδ) T cells in mediating potent MHC-unrestricted cytotoxicity in numerous malignancies. Here, we analyzed Vδ1 and Vδ2 γδ T cell subsets in newly diagnosed chronic myeloid leukemia (CML) patients (n = 40) who had initiated tyrosine kinase inhibitor (TKI) therapy including imatinib (n = 22), nilotinib (n = 14) and dasatinib (n = 4). Patient peripheral blood samples were analyzed at diagnosis and monitored prospectively at 3, 6, 12 and 18 months post-TKI. γδ T cells isolated from healthy donors and CML patients were used against K562, LAMA-84 and KYO-1 cell lines and against primary CML cells in cytotoxicity assays. We found large expansions of Vδ1 and Vδ2 T cells in patients at diagnosis compared to age-matched healthy donors (n = 40) (p < 0.0001). The γδ T cell reconstitution in patients on imatinib and also on nilotinib showed significant reductions of Vδ1 T cell and Vδ2 T cell absolute counts at 3 months compared to diagnosis. Importantly, Vδ1 and Vδ2 T absolute cell counts remained at normal levels from 3 months throughout the follow-up. Next, we observed susceptibility to specific lysis of primary CML tumor cells by Vδ1 T cells from healthy donors. Furthermore, we determined inherent cytotoxic reactivity by autologous patients' Vδ1 T lymphocytes against primary CML tumor cells. Finally, the TCR clonality profiles showed in CML patients mostly polyclonal repertoires regardless of the TKI. Our results provide further evidence into γδ T cell antileukemia immunity in CML that might be beneficial for long-term disease control and treatment outcome.
- MeSH
- buněčné linie MeSH
- chronická myeloidní leukemie * farmakoterapie metabolismus MeSH
- imatinib mesylát farmakologie terapeutické užití MeSH
- lidé MeSH
- myeloidní leukemie * metabolismus MeSH
- receptory antigenů T-buněk gama-delta metabolismus MeSH
- T-lymfocyty - podskupiny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The nine-amino-acid transactivation domains (9aaTAD) was identified in numerous transcription factors including Gal4, p53, E2A, MLL, c-Myc, N-Myc, and also in SP, KLF, and SOX families. Most of the 9aaTAD domains interact with the KIX domain of transcription mediators MED15 and CBP to activate transcription. The NFkB activation domain occupied the same position on the KIX domain as the 9aaTADs of MLL, E2A, and p53. Binding of the KIX domain is established by the two-point interaction involving 9aaTAD positions p3-4 and p6-7. The NFkB primary binding region (positions p3-4) is almost identical with MLL and E2A, but secondary NFkB binding region differs by the position and engages the distal NFkB region p10-11. Thus, the NFkB activation domain is five amino acids longer than the other 9aaTADs. The NFkB activation domain includes an additional region, which we called the Omichinski Insert extending activation domain length to 14 amino acids. By deletion, we demonstrated that Omichinski Insert is an entirely non-essential part of NFkB activation domain. In summary, we recognized the NFkB activation domain as prolonged 9aaTAD conserved in evolution from humans to amphibians.
- MeSH
- aktivace transkripce MeSH
- aminokyseliny * metabolismus MeSH
- lidé MeSH
- nádorový supresorový protein p53 * metabolismus MeSH
- NF-kappa B metabolismus MeSH
- sekvence aminokyselin MeSH
- transkripční faktory metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Previously, the Nine amino acid TransActivation Domain (9aaTAD) was identified in the Gal4 region 862-870 (DDVYNYLFD). Here, we identified 9aaTADs in the distal Gal4 orthologs by our prediction algorithm and found their conservation in the family. The 9aaTAD function as strong activators was demonstrated. We identified adjacent Gal4 region 871-811 (DEDTPPNPKKE) as a natural 9aaTAD inhibitory domain located at the extreme Gal4 terminus. Moreover, we identified conserved Gal4 region 172-185 (FDWSEEDDMSDGLP), which was capable to reverse the 9aaTAD inhibition. In conclusion, our results uncover the existence of the cryptic inhibitory domains, which need to be carefully implemented in all functional studies with transcription factors to avoid incorrect conclusions.
The cellular pathology of schizophrenia and the potential of antipsychotics to target underlying neuronal dysfunctions are still largely unknown. We employed glutamatergic neurons derived from induced pluripotent stem cells (iPSC) obtained from schizophrenia patients with known histories of response to clozapine and healthy controls to decipher the mechanisms of action of clozapine, spanning from molecular (transcriptomic profiling) and cellular (electrophysiology) levels to observed clinical effects in living patients. Glutamatergic neurons derived from schizophrenia patients exhibited deficits in intrinsic electrophysiological properties, synaptic function and network activity. Deficits in K+ and Na+ currents, network behavior, and glutamatergic synaptic signaling were restored by clozapine treatment, but only in neurons from clozapine-responsive patients. Moreover, neurons from clozapine-responsive patients exhibited a reciprocal dysregulation of gene expression, particularly related to glutamatergic and downstream signaling, which was reversed by clozapine treatment. Only neurons from clozapine responders showed return to normal function and transcriptomic profile. Our results underscore the importance of K+ and Na+ channels and glutamatergic synaptic signaling in the pathogenesis of schizophrenia and demonstrate that clozapine might act by normalizing perturbances in this signaling pathway. To our knowledge this is the first study to demonstrate that schizophrenia iPSC-derived neurons exhibit a response phenotype correlated with clinical response to an antipsychotic. This opens a new avenue in the search for an effective treatment agent tailored to the needs of individual patients.
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
Background: Endometriosis is a common gynecological disease characterized by the presence of endometrial tissue outside the uterus causing chronic inflammation, severe pain, and infertility. However, the innate immunity of gamma-delta (γδ) T lymphocytes in endometriosis has not been characterized. Women with endometriosis present numerous endocrine and immune dysfunctions and elevated risk for endometrial, ovarian, and breast cancers. The tyrosine kinase EphA2 is often overexpressed in cancer including endometrial carcinoma. Methods: We analyzed Vδ1 and Vδ2 γδ T cells in peripheral blood and paired peritoneal fluid samples in endometriosis patients (n = 19) and compared the counts with that of age- and sex-matched healthy donors (n = 33) using flow cytometry. Vδ1 and Vδ2 T cells isolated from healthy donors were used against KLE, RL-95, and Ishikawa endometrial tumor cells in 4 h flow cytometric cytotoxicity assays. The EphA2 blocking studies were performed using antibody, small-molecule inhibitor ALW-II-41-27, and the CRISPR/Cas9. Results: We determined Vδ1 T cells substantially reduced in patients' peripheral blood (p < 0.01) and peritoneal fluid (p < 0.001). No differences were found for circulating Vδ2 T cells compared with peritoneal fluid samples. We observed inherent cytotoxic reactivity of Vδ1 and Vδ2 γδ T lymphocytes against endometrial tumor cells. Importantly, we found reduced specific lysis of EphA2-positive cell lines KLE and RL-95 by Vδ1 T cells in the EphA2 antibody blocking studies and by the EphA2 inhibitor. Furthermore, Vδ1 T-cell-mediated killing was significantly decreased in RL-95 cell EPHA2 knockout. Finally, potent cytolytic activity exerted by Vδ1 T cells was significantly reduced in EPHA2 knockouts in renal A-498 and colon HT-29 carcinoma cell lines. Conclusions: We determined variable levels of Vδ1 and Vδ2 γδ T cells in endometriosis patients. We observed inherent cytotoxic reactivity of γδ T-cell subsets against endometrial cell lines. Specifically, we found that blocking of EphA2 expression resulted in significant inhibition of endometrial tumor killing mediated by Vδ1 γδ T cells. These results suggest that EphA2 is involved in tumor cell lysis and contributes to susceptibility to Vδ1 γδ T cells cytotoxic reactivity.
- MeSH
- dospělí MeSH
- endometrióza imunologie metabolismus MeSH
- intraepiteliální lymfocyty imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory endometria imunologie metabolismus MeSH
- receptor EphA2 metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Plasmacytoid dendritic cells (pDCs) play prominent roles in mediating innate and adaptive immune responses. However, it is unclear how pDCs contribute to the immunosuppressive tumor microenvironment described in multiple myeloma (MM). METHODS: Newly diagnosed myeloma patients (MM, n = 37) were analyzed to determine the pDC counts in comparison to peripheral blood (PB, n = 53) and bone marrow (BM, n = 10) samples of age-matched healthy donors (HD) using flow cytometry. Second, proliferation of myeloma tumor cells in the presence of freshly isolated pDCs was examined. Third, production of IFNα by pDCs co-cultured with MM cells was determined by intracellular staining. RESULTS: We found a highly significant reduction of circulating pDCs (p < 0.0001) and in bone marrow (p < 0.0001) of MM patients compared to HD. We also observed a significant decrease of pDCs (p = 0.004) in BM in patients with monoclonal gammopathy of undetermined significance (MGUS, n = 12). Importantly, we determined that pDCs promote proliferation specifically of MM cells and not the stromal cells and that pDCs secrete IFNα upon co-culture with MM tumor cells. CONCLUSIONS: Our results show altered pDC frequencies in the BM microenvironment in MGUS and MM patients at diagnosis. We showed the tumor-promoting function of pDCs that may mediate immune deficiencies affecting long-term disease control and treatment outcome.
- Publikační typ
- časopisecké články MeSH
The nine-amino-acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3-4 and p6-7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF-kB, and p53. In this study, we analyzed the 9aaTADs-KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1-α2-α3 are influenced by sterically-associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX-L12-G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1-α2-α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX-L12-G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX-L12-G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co-operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α-helixes and enables the enhanced formation of the KIX-L12-G2 region. This contributes to free energy and is the key for the KIX-9aaTAD binding. Therefore, the 9aaTAD-KIX interactions do not operate under the rigid key-and-lock mechanism what explains the 9aaTAD natural variability.
- MeSH
- aminokyselinové motivy MeSH
- histonlysin-N-methyltransferasa chemie metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- nádorový supresorový protein p53 chemie metabolismus MeSH
- NF-kappa B chemie metabolismus MeSH
- protein vázající CREB chemie metabolismus MeSH
- protoonkogenní protein MLL chemie metabolismus MeSH
- transkripční faktory bHLH chemie metabolismus MeSH
- transkripční faktory chemie metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH