Selective agonism of the estrogen receptor (ER) subtypes, ERα and ERβ, has historically been difficult to achieve due to the high degree of ligand-binding domain structural similarity. Multiple efforts have focused on the use of classical organic scaffolds to model 17β-estradiol geometry in the design of ERβ selective agonists, with several proceeding to various stages of clinical development. Carborane scaffolds offer many unique advantages including the potential for novel ligand/receptor interactions but remain relatively unexplored. We synthesized a series of para-carborane estrogen receptor agonists revealing an ERβ selective structure-activity relationship. We report ERβ agonists with low nanomolar potency, greater than 200-fold selectivity for ERβ over ERα, limited off-target activity against other nuclear receptors, and only sparse CYP450 inhibition at very high micromolar concentrations. The pharmacological properties of our para-carborane ERβ selective agonists measure favorably against clinically developed ERβ agonists and support further evaluation of carborane-based selective estrogen receptor modulators.
- MeSH
- beta receptor estrogenů agonisté MeSH
- estrogeny chemická syntéza chemie farmakologie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- molekulární struktura MeSH
- sloučeniny boru chemická syntéza chemie farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
We report that decreased expression of miR-30c in tumor compared to adjacent tissue is sex-dependent in colorectal cancer (CRC) patients. High expression of miR-30c was associated with better survival in the whole cohort. When the cohort was split into male and female subcohorts, decreased miR-30c expression in tumor compared to adjacent tissue was observed only in males. Expression of miR-30c was decreased in CRC tumor tissue in male patients with nodes involvement compared to those without metastases in nodes and this difference was not observe in females. Next dependency of miR-30c expression on oestrogen receptor beta (ERbeta) mRNA levels in tumor was tested. In males with low expression of ERbeta, we observed a significant decrease in miR-30c levels in patients with nodes involvement compared to those without nodes involvement. This difference was not observed in males with high ERbeta mRNA levels and in females. Accordingly, males with low expression of ERbeta and high expression of miR-30c showed a better survival that those with low expression ERbeta and low expression of miR-30c. It is possible to conclude that whole cohort survival dependence on miR-30c is mostly generated by a subcohort of males with low expression of ERbeta mRNA in tumor tissue.
- MeSH
- beta receptor estrogenů genetika metabolismus MeSH
- kohortové studie MeSH
- kolorektální nádory genetika metabolismus patologie MeSH
- lidé MeSH
- mikro RNA biosyntéza genetika MeSH
- míra přežití MeSH
- nádorové biomarkery biosyntéza genetika MeSH
- prognóza MeSH
- senioři MeSH
- sexuální faktory MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The incidence of colorectal cancer (CRC) shows a sex-dependent difference in humans. The aim of this study was to analyze estrogen receptor beta mRNA (ERbeta) expression in patients with CRC with respect to their gender and clinicopathological features. Since cancer progression is accompanied by tumor vascularization, VEGF-A (vascular endothelial growth factor A) transcription was analyzed along with ERbeta mRNA. ERbeta mRNA was also correlated with the expression of clock genes, which are known to influence the cell cycle. ERbeta mRNA expression in females with CRC showed an inverse association with increasing tumor staging that was not observed in males. Lower levels of ERbeta mRNA were observed in females with a higher clinical stage compared with those with earlier-stage tumors. ERbeta mRNA expression showed a significant positive correlation with mRNA of clock genes period 2 and cryptochrome 2 in healthy but not in cancerous tissue in males. Expression of VEGF-A mRNA showed a negative correlation with ERbeta mRNA after splitting of the cohort according to gender and nodus involvement. We propose that gender differences in ERbeta mRNA expression in tumors during the early stages of CRC can partially explain the lower occurrence of CRC in females compared with males.
- MeSH
- beta receptor estrogenů metabolismus MeSH
- cirkadiánní rytmus - signální peptidy a proteiny metabolismus MeSH
- kohortové studie MeSH
- kolorektální nádory metabolismus MeSH
- lidé MeSH
- pohlavní dimorfismus * MeSH
- senioři MeSH
- vaskulární endoteliální růstový faktor A metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The pathogenesis of adolescent idiopathic scoliosis (AIS), including the associated local changes in deep paravertebral muscles, is poorly understood. The asymmetric expression of several molecules involved in the melatonin signaling pathway, including melatonin receptors 1A/1B (MTNR1A/MTNR1B), estrogen receptor 2 (ESR2) and calmodulin (CALM1), has previously been suggested to be associated with AIS. However, this hypothesis is based on single studies in which the data were obtained by different methodological approaches. Therefore, to evaluate the symmetry of the mRNA expression levels of these molecules, 18 patients with AIS and 10 non‑scoliotic controls were enrolled in the present study. Muscle biopsy samples from deep paraspinal muscles (from the convexity and concavity of the scoliotic curve in patients with AIS, or from the left and right sides in controls) were obtained during spinal surgery. For each sample, the relative mRNA expression levels of MTNR1A, MTNR1B, CALM1 and ESR2 were analyzed by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and were quantified according to the quantification cycle method. The results indicated that the mRNA expression levels of none of the investigated molecules were significantly different between samples obtained from the convex and concave side of the scoliotic curve in patients with AIS. In addition, no difference in expression was detected between the patients with AIS and the controls. With regards to MTNR1A and MTNR1B, their expression was very weak in paravertebral muscles, and in the majority of cases their expression could not be detected by repeated RT‑qPCR analysis. Therefore, these data do not support the previously suggested role of the asymmetric expression of molecules involved in the melatonin signaling pathway in deep paravertebral muscles in the pathogenesis of AIS.
- MeSH
- beta receptor estrogenů genetika MeSH
- dítě MeSH
- dospělí MeSH
- exprese genu MeSH
- genetická predispozice k nemoci MeSH
- hluboké zádové svaly metabolismus MeSH
- kalmodulin genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA MeSH
- mladiství MeSH
- mladý dospělý MeSH
- receptor melatoninový MT1 genetika MeSH
- receptor melatoninový MT2 genetika MeSH
- skolióza etiologie metabolismus patologie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Estrogen deprivation is considered responsible for many age-related processes, including poor wound healing. Guided by previous observations that estradiol accelerates re‑epithelialization through estrogen receptor (ER)‑β, in the present study, we examined whether selective ER agonists [4,4',4''-(4-propyl [1H] pyrazole-1,3,5-triyl)‑trisphenol (PPT), ER‑α agonist; 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), ER‑β agonist] affect the expression of basic proliferation and differentiation markers (Ki‑67, keratin‑10, ‑14 and ‑19, galectin‑1 and Sox‑2) of keratinocytes using HaCaT cells. In parallel, ovariectomized rats were treated daily with an ER modulator, and wound tissue was removed 21 days after wounding and routinely processed for basic histological analysis. Our results revealed that the HaCaT keratinocytes expressed both ER‑α and ‑β, and thus are well-suited for studying the effects of ER agonists on epidermal regeneration. The activation of ER‑α produced a protein expression pattern similar to that observed in the control culture, with a moderate expression of Ki‑67 being observed. However, the activation of ER‑β led to an increase in cell proliferation and keratin‑19 expression, as well as a decrease in galectin‑1 expression. Fittingly, in rat wounds treated with the ER‑β agonist (DPN), epidermal regeneration was accelerated. In the present study, we provide information on the mechanisms through which estrogens affect the expression patterns of selected markers, thus modulating keratinocyte proliferation and differentiation; in addition, we demonstrate that the pharmacological activation of ER-α and -β has a direct impact on wound healing.
- MeSH
- alfa receptor estrogenů agonisté metabolismus MeSH
- beta receptor estrogenů agonisté metabolismus MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné linie MeSH
- fenoly farmakologie MeSH
- hojení ran účinky léků MeSH
- keratinocyty cytologie účinky léků metabolismus patologie MeSH
- kůže účinky léků metabolismus patologie MeSH
- lidé MeSH
- nitrily farmakologie MeSH
- potkani Sprague-Dawley MeSH
- pyrazoly farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Wedelolactone, a plant coumestan, was shown to act as anti-cancer agent for breast and prostate carcinomas in vitro and in vivo targeting multiple cellular proteins including androgen receptors, 5-lipoxygenase and topoisomerase IIα. It is cytotoxic to breast, prostate, pituitary and myeloma cancer cell lines in vitro at μM concentrations. In this study, however, a novel biological activity of nM dose of wedelolactone was demonstrated. Wedelolactone acts as agonist of estrogen receptors (ER) α and β as demonstrated by transactivation of estrogen response element (ERE) in cells transiently expressing either ERα or ERβ and by molecular docking of this coumestan into ligand binding pocket of both ERα and ERβ. In breast cancer cells, wedelolactone stimulates growth of estrogen receptor-positive cells, expression of estrogen-responsive genes and activates rapid non-genomic estrogen signalling. All these effects can be inhibited by pretreatment with pure ER antagonist ICI 182,780 and they are not observed in ER-negative breast cancer cells. We conclude that wedelolactone acts as phytoestrogen in breast cancer cells by stimulating ER genomic and non-genomic signalling pathways.
- MeSH
- aktivace transkripce genetika MeSH
- alfa receptor estrogenů metabolismus MeSH
- antagonisté estrogenového receptoru farmakologie MeSH
- beta receptor estrogenů metabolismus MeSH
- estradiol analogy a deriváty farmakologie MeSH
- estrogeny farmakologie MeSH
- HEK293 buňky MeSH
- kumariny farmakologie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nádorové buněčné linie MeSH
- nádory prsu farmakoterapie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky farmakologie MeSH
- responzivní elementy genetika MeSH
- signální transdukce účinky léků MeSH
- simulace molekulového dockingu MeSH
- transkripční faktor AP-1 metabolismus MeSH
- vazebná místa účinky léků MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- alfa receptor estrogenů metabolismus MeSH
- beta receptor estrogenů metabolismus MeSH
- endometrióza metabolismus patofyziologie MeSH
- endometrium fyziologie metabolismus patologie MeSH
- lidé MeSH
- receptory pro estrogeny metabolismus MeSH
- receptory spřažené s G-proteiny metabolismus MeSH
- transkripční faktory MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
Antiangiogenic activity of the brassinosteroid plant hormones (BRs) and their derivative cholestanon was investigated in human umbilical vein endothelial cells (HUVEC) and in human microvascular endothelial cells (HMEC-1). 24-Epibrassinolide and 28-homocastasterone from group of 21 tested natural BRs inhibited migration of HUVEC cells. Seven tested BRs decreased the number of tubes significantly. Synthetic analogue cholestanon inhibited angiogenesis in vitro more effectively than natural BRs. Because of the similarity of BRs to human steroids, we have also studied interactions of BRs with human steroid receptors. Synthetic BRs cholestanon showed agonistic effects on estrogen-receptor-α, estrogen-receptor-β and androgen receptor. Of the natural BRs, 24-epibrassinolide was found to be a weak antagonist of estrogen-receptor-α (ERα). Our results provide the first evidence that large group of BRs can inhibit in vitro angiogenesis of primary endothelial cells. BRs constitute a novel group of human steroid receptor activators or inhibitors with capacity to inhibit angiogenesis.
- MeSH
- alfa receptor estrogenů metabolismus MeSH
- beta receptor estrogenů metabolismus MeSH
- brassinosteroidy metabolismus farmakologie MeSH
- endoteliální buňky pupečníkové žíly (lidské) účinky léků metabolismus MeSH
- fyziologická neovaskularizace účinky léků MeSH
- inhibitory angiogeneze metabolismus farmakologie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Steroid receptor coactivators p300 and CBP are highly expressed in advanced prostate cancer. They potentiate activation of androgen receptor by androgens and anti-androgens. In the present study, we have addressed the question whether these coactivators enhance activity of estrogen receptor-beta (ER-β), which is variably expressed in prostate cancers. METHODS: Expression levels of the coactivators p300 and CBP were manipulated by plasmid or siRNA transfections and activity of ER-β was measured by luciferase assays. Viability was measured by MTT assays and cellular migration was determined by wound-healing and Boyden chamber assays. RESULTS: High expression of ER-β was found in PC3 cells which were used for the experiments. p300 or CBP enhanced activation of ER-β by genistein. Antiestrogens did not acquire agonistic properties in the presence of increased concentrations of either coactivator. Inhibition of p300 or CBP decreased genistein stimulation of ER-β. Genistein reduced migration of PC3 prostate cancer cells and down-regulation of p300 potentiated this effect. CONCLUSIONS: p300 and CBP are implicated in regulation of ER-β activity and cellular migration in prostate cancer. These findings are important for understanding of action of ER-β in carcinoma of the prostate.
- MeSH
- beta receptor estrogenů genetika fyziologie MeSH
- genistein farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory prostaty patologie MeSH
- pohyb buněk účinky léků MeSH
- protein p300 asociovaný s E1A fyziologie MeSH
- protein vázající CREB fyziologie MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Estrogen replacement therapy could play a role in the reduction of injury associated with cerebral ischemia in vivo, which could be, at least partially, a consequence of estrogen influence of glutamate buffering by astrocytes during hypoxia/ischemia. Estrogen exerts biological effects through interaction with its two receptors: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are both expressed in astrocytes. This study explored effects of hypoxia and glucose deprivation (HGD), alone or followed by 1 h recovery, on ERα and ERβ expression in primary rat astrocyte cultures following 1 h exposure to: a) 5 % CO2 in air (control group-CG); b) 2 % O2/5 % CO2 in N2 with glucose deprivation (HGD group-HGDG); or c) the HGDG protocol followed by 1 h CG protocol (recovery group-RG). ERα mRNA expression decreased in HGDG. At the protein level, full-length ERα (67 kDa) and three ERα-immunoreactive protein bands (63, 60 and 52 kDa) were detected. A significant decrease in the 52 kDa band was seen in HGDG, while a significant decrease in expression of the full length ERα was seen in the RG. ERβ mRNA and protein expression (a 54 kDa single band) did not change. The observed decrease in ERα protein may limit estrogenmediated signalling in astrocytes during hypoxia and recovery.
- MeSH
- alfa receptor estrogenů genetika metabolismus MeSH
- astrocyty metabolismus MeSH
- beta receptor estrogenů genetika metabolismus MeSH
- glukosa metabolismus MeSH
- hypoxie buňky MeSH
- krysa rodu rattus MeSH
- messenger RNA metabolismus MeSH
- potkani Sprague-Dawley MeSH
- primární buněčná kultura MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH