Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment-pigment and pigment-protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.
- MeSH
- biologické pigmenty metabolismus MeSH
- diuron MeSH
- fluorescenční spektrometrie MeSH
- Heterokontophyta metabolismus účinky záření MeSH
- membránové proteiny metabolismus MeSH
- sladká voda * MeSH
- světlo * MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- teplota MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria. To understand the origin of the slowest (tens of minutes) kinetic phase, the M-T fluorescence decline, in the context of light acclimation of these globally important microorganisms, we have compared spectrally resolved fluorescence induction data from the wild type Synechocystis sp. PCC 6803 cells, using orange (λ = 593 nm) actinic light, with those of mutants, ΔapcD and ΔOCP, that are unable to perform either state transition or fluorescence quenching by orange carotenoid protein (OCP), respectively. Our results suggest a multiple origin of the M-T decline and reveal a complex interplay of various known regulatory processes in maintaining the redox homeostasis of a cyanobacterial cell. In addition, they lead us to suggest that a new type of regulatory process, operating on the timescale of minutes to hours, is involved in dissipating excess light energy in cyanobacteria.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- chlorofyl chemie genetika metabolismus MeSH
- diuron chemie MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- fykobilizomy genetika metabolismus MeSH
- kyanid draselný chemie MeSH
- luminiscenční měření MeSH
- světlo MeSH
- Synechocystis chemie genetika metabolismus MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
We compared a novel PSII-biosensor assay with a standard algal growth inhibition test for detection of photosynthetic herbicides--diuron, atrazine and isoproturon in liquid samples. To evaluate the convenience and sensitivity, values of the parameters EC50 and LOD and the duration of assays were compared. The biosensor assay was made with an electrochemical biosensor toxicity analyser with immobilised Photosystem II (PSII) complex. Using the PSII-biosensor assay, higher sensitivity (LOD) to herbicides (10(-8)-10(-9)M) was achieved as compared to standard algal growth inhibition tests (about 10(-7)M). The results of both assays showed a good correlation as concerns their EC50 values while the interval of detectable concentrations is about twice wider for PSII-biosensor. A proposed measurement protocol includes the reference standard of phytotoxicity (RSP). The main advantage of the PSII-biosensor assay is that it can be completed in about 1h and is by 1-2 orders more sensitive than standard algal growth inhibition test, which takes 72 h.
- MeSH
- atrazin toxicita MeSH
- biosenzitivní techniky metody MeSH
- časové faktory MeSH
- chemické látky znečišťující vodu toxicita MeSH
- Chlorophyta účinky léků růst a vývoj metabolismus MeSH
- diuron toxicita MeSH
- fenylmočovinové sloučeniny toxicita MeSH
- fotosyntéza účinky léků MeSH
- fotosystém II (proteinový komplex) antagonisté a inhibitory metabolismus MeSH
- herbicidy toxicita MeSH
- reprodukovatelnost výsledků MeSH
- roztoky chemie MeSH
- senzitivita a specificita MeSH
- testy toxicity MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH