In pathogenic fungi and oomycetes, interspecific hybridization may lead to the formation of new species having a greater impact on natural ecosystems than the parental species. From the early 1990s, a severe alder (Alnus spp.) decline due to an unknown Phytophthora species was observed in several European countries. Genetic analyses revealed that the disease was caused by the triploid hybrid P. × alni, which originated in Europe from the hybridization of P. uniformis and P. × multiformis. Here, we investigated the population structure of P. × alni (158 isolates) and P. uniformis (85 isolates) in several European countries using microsatellite markers. Our analyses confirmed the genetic structure previously observed in other European populations, with P. uniformis populations consisting of at most two multilocus genotypes (MLGs) and P. × alni populations dominated by MLG Pxa-1. The genetic structure of P. × alni populations in the Czech Republic, Hungary and Sweden seemed to reflect the physical isolation of river systems. Most rare P. × alni MLGs showed a loss of heterozygosity (LOH) at one or a few microsatellite loci compared with other MLGs. This LOH may allow a stabilization within the P. × alni genome or a rapid adaptation to stress situations. Alternatively, alleles may be lost because of random genetic drift in small, isolated populations, with no effect on fitness of P. × alni. Additional studies would be necessary to confirm these patterns of population diversification and to better understand the factors driving it.
- MeSH
- ekosystém MeSH
- genetická variace MeSH
- genotyp MeSH
- mikrosatelitní repetice genetika MeSH
- nemoci rostlin MeSH
- Phytophthora * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Švédsko MeSH
The reactions of isolates of Phytophthora cactorum, P. nicotianae and P. × pelgrandis to metalaxyl, mancozeb, dimethomorph, streptomycin and chloramphenicol were tested to obtain information about the variability of resistance in these pathogens. Distinct genetic groups showed significant differences in resistance to all tested substances except streptomycin. In response to streptomycin, the growth inhibition rates of distinct groups did not differ significantly. The most remarkable differences were detected in the reactions to chloramphenicol and metalaxyl. Discriminant analysis evaluating the effect of all substances confirmed the differences among the groups, which are in agreement with the differences revealed by earlier DNA analyses.
The Phytophthora cactorum species complex in Europe is composed of P. cactorum, Phytophthora hedraiandra, and a hybrid species Phytophthora × serendipita. Evolutionary analyses using the amplified fragment length polymorphism (AFLP) method were carried out on 133 isolates from 19 countries. The AFLP data were complemented by sequence analysis of three genes (ITS region of ribosomal RNA gene, phenolic acid decarboxylase - Pheca I, and Cytochrome oxidase - Cox I), morphometric analysis and cardinal temperature data. The high proportion of clonal genotypes, low gene flow among groups, which was defined by the structure analysis, and low Nei's gene diversity confirms the homothallic life cycle of the groups. On the other hand, the ITS, Cox I and Pheca I sequence data support occasional hybridization between species. The structure K = 5 grouping revealed two groups of hybrid origin (C2 and F). While the C2 group resembles P. × serendipita, the F group includes Finnish isolates characterized by high oogonial abortion rates and slow growth. The morphological characters routinely used in identification of Phytophthora species are not useful for delimitation of species from the P. cactorum complex. Therefore, we discuss the status of P. hedraiandra as a separate species. The epitypification of P. cactorum is proposed.
- MeSH
- analýza polymorfismu délky amplifikovaných restrikčních fragmentů MeSH
- DNA fungální genetika MeSH
- fungální proteiny genetika MeSH
- fylogeneze * MeSH
- genotyp * MeSH
- mezerníky ribozomální DNA genetika MeSH
- molekulární evoluce * MeSH
- Phytophthora klasifikace genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study their evolution, including pathogenicity effector proteins, such as RxLR effectors. Plasmopara halstedii is a devastating pathogen of sunflower and a potential pathosystem model to study downy mildews, as several Avr-genes and R-genes have been predicted and unlike Arabidopsis downy mildew, large quantities of almost contamination-free material can be obtained easily. RESULTS: Here a high-quality draft genome of Plasmopara halstedii is reported and analysed with respect to various aspects, including genome organisation, secondary metabolism, effector proteins and comparative genomics with other sequenced oomycetes. Interestingly, the present analyses revealed further variation of the RxLR motif, suggesting an important role of the conservation of the dEER-motif. Orthology analyses revealed the conservation of 28 RxLR-like core effectors among Phytophthora species. Only six putative RxLR-like effectors were shared by the two sequenced downy mildews, highlighting the fast and largely independent evolution of two of the three major downy mildew lineages. This is seemingly supported by phylogenomic results, in which downy mildews did not appear to be monophyletic. CONCLUSIONS: The genome resource will be useful for developing markers for monitoring the pathogen population and might provide the basis for new approaches to fight Phytophthora and downy mildew pathogens by targeting core pathogenicity effectors.
- MeSH
- biologická evoluce MeSH
- faktory virulence genetika MeSH
- fosfolipidy metabolismus MeSH
- fungální proteiny MeSH
- fylogeneze MeSH
- genom fungální * MeSH
- genomika metody MeSH
- Helianthus mikrobiologie MeSH
- heterozygot MeSH
- mikrosatelitní repetice MeSH
- oomycety klasifikace genetika metabolismus MeSH
- Phytophthora genetika MeSH
- promotorové oblasti (genetika) MeSH
- repetitivní sekvence nukleových kyselin MeSH
- sekundární metabolismus MeSH
- signální transdukce MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
Phytophthora plurivora and other Phytophthora species are known to be serious pathogens of forest trees. Little is known, however, about the presence of P. plurivora in Polish oak forests and their role in oak decline. The aims of this study were to identify P. plurivora in healthy and declining Quercus robur stands in southern Poland and to demonstrate the relationship between different site factors and the occurrence of P. plurivora. In addition, the virulence of P. plurivora and other Phytophthora species was evaluated through inoculations using 2-year-old oak seedlings. Rhizosphere soil was investigated from 39 oak stands representing different healthy tree statuses. The morphology and DNA sequences of the internal transcribed spacer regions (ITS) of the ribosomal DNA and the mitochondrial cox1 gene were used for identifications. P. plurivora, an oak fine root pathogen, was isolated from rhizosphere soil samples in 6 out of 39 stands. Additionally, Phytophthora cambivora, Phytophthora polonica and Phytophthora rosacearum-like were also obtained from several stands. The results showed a significant association between the presence of P. plurivora and the health status of oak trees. Similar relationships were also observed for all identified Phytophthora species. In addition, there was evidence for a connection between the presence of all identified Phytophthora species and some site conditions. Phytophthora spp. occurred more frequently in declining stands and in silt loam and sandy loam soils with pH ≥ 3.66. P. plurivora and P. cambivora were the only species capable of killing whole plants, producing extensive necrosis on seedling stems.
- MeSH
- dub (rod) parazitologie MeSH
- fylogeneze MeSH
- kořeny rostlin parazitologie MeSH
- lesy MeSH
- molekulární sekvence - údaje MeSH
- nemoci rostlin parazitologie MeSH
- Phytophthora klasifikace genetika izolace a purifikace MeSH
- stromy parazitologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
Cryptogein is a proteinaceous elicitor secreted by Phytophthora cryptogea that can induce resistance to P. parasitica in tobacco plants. On the basis of previous computer modelling experiments, by site-directed mutagenesis a series of cryptogein variants was prepared with altered abilities to bind sterols, phospholipids or both. The sterol binding and phospholipid transfer activities corresponded well with the previously reported structural data. Induction of the synthesis of reactive oxygen species (ROS) in tobacco cells in suspension and proteomic analysis of intercellular fluid changes in tobacco leaves triggered by these mutant proteins were not proportional to their ability to bind or transfer sterols and phospholipids. However, changes in the intercellular proteome corresponded to transcription levels of defence genes and resistance to P. parasitica and structure-prediction of mutants did not reveal any significant changes in protein structure. These results suggest, contrary to previous proposals, that the sterol-binding ability of cryptogein and its mutants, and the associated conformational change in the ω-loop, might not be principal factors in either ROS production or resistance induction. Nevertheless, the results support the importance of the ω-loop for the interaction of the protein with the high affinity binding site on the plasma membrane.
- MeSH
- fosfolipidy metabolismus MeSH
- fungální proteiny genetika metabolismus MeSH
- imunita rostlin imunologie MeSH
- kyselina chlorogenová analýza MeSH
- listy rostlin genetika imunologie parazitologie fyziologie MeSH
- mutace MeSH
- nemoci rostlin imunologie parazitologie MeSH
- Phytophthora genetika metabolismus patogenita MeSH
- proteiny genetika metabolismus MeSH
- proteomika metody MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rekombinantní proteiny MeSH
- seskviterpeny analýza MeSH
- steroly metabolismus MeSH
- tabák genetika imunologie parazitologie fyziologie MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH