BACKGROUND: Inflorescences of wheat species, spikes, are characteristically unbranched and bear one sessile spikelet at a spike rachis node. Development of supernumerary spikelets (SSs) at rachis nodes or on the extended rachillas is abnormal. Various wheat morphotypes with altered spike morphology, associated with the development of SSs, present an important genetic resource for studies on genetic regulation of wheat inflorescence development. RESULTS: Here we characterized diploid and tetraploid wheat lines of various non-standard spike morphotypes, which allowed for identification of a new mutant allele of the WHEAT FRIZZY PANICLE (WFZP) gene that determines spike branching in diploid wheat Ttiticum monococcum L. Moreover, we found that the development of SSs and spike branching in wheat T. durum Desf. was a result of a wfzp-A/TtBH-A1 mutation that originated from spontaneous hybridization with T. turgidum convar. сompositum (L.f.) Filat. Detailed characterization of the false-true ramification phenotype controlled by the recessive sham ramification 2 (shr2) gene in tetraploid wheat T. turgidum L. allowed us to suggest putative functions of the SHR2 gene that may be involved in the regulation of spikelet meristem fate and in specification of floret meristems. The results of a gene interaction test suggested that genes WFZP and SHR2 function independently in different processes during spikelet development, whereas another spike ramification gene(s) interact(s) with SHR2 and share(s) common functions. CONCLUSIONS: SS mutants represent an important genetic tool for research on the development of the wheat spikelet and for identification of genes that control meristem activities. Further studies on different non-standard SS morphotypes and wheat lines with altered spike morphology will allow researchers to identify new genes that control meristem identity and determinacy, to elucidate the interaction between the genes, and to understand how these genes, acting in concert, regulate the development of the wheat spike.
- MeSH
- květy růst a vývoj MeSH
- meristém růst a vývoj MeSH
- pšenice genetika růst a vývoj MeSH
- regulace genové exprese u rostlin genetika fyziologie MeSH
- rostlinné geny genetika fyziologie MeSH
- vývojová regulace genové exprese genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP+ -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD+ is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP+ binding induces a conformational change of the loop carrying Arg-228, which seals the NADP+ in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5.
- MeSH
- Bryophyta enzymologie genetika MeSH
- fylogeneze MeSH
- GABA analogy a deriváty metabolismus MeSH
- kapradiny enzymologie genetika MeSH
- konformace proteinů MeSH
- kyselina jantarová metabolismus MeSH
- rostlinné geny genetika fyziologie MeSH
- substrátová specifita MeSH
- sukcinátsemialdehyddehydrogenasa genetika metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
The precocious germination of cereal grains before harvest, also known as pre-harvest sprouting, is an important source of yield and quality loss in cereal production. Pre-harvest sprouting is a complex grain defect and is becoming an increasing challenge due to changing climate patterns. Resistance to sprouting is multi-genic, although a significant proportion of the sprouting variation in modern wheat cultivars is controlled by a few major quantitative trait loci, including Phs-A1 in chromosome arm 4AL. Despite its importance, little is known about the physiological basis and the gene(s) underlying this important locus. In this study, we characterized Phs-A1 and show that it confers resistance to sprouting damage by affecting the rate of dormancy loss during dry seed after-ripening. We show Phs-A1 to be effective even when seeds develop at low temperature (13 °C). Comparative analysis of syntenic Phs-A1 intervals in wheat and Brachypodium uncovered ten orthologous genes, including the Plasma Membrane 19 genes (PM19-A1 and PM19-A2) previously proposed as the main candidates for this locus. However, high-resolution fine-mapping in two bi-parental UK mapping populations delimited Phs-A1 to an interval 0.3 cM distal to the PM19 genes. This study suggests the possibility that more than one causal gene underlies this major pre-harvest sprouting locus. The information and resources reported in this study will help test this hypothesis across a wider set of germplasm and will be of importance for breeding more sprouting resilient wheat varieties.
- MeSH
- chromozomy rostlin genetika fyziologie MeSH
- genotypizační techniky MeSH
- jednonukleotidový polymorfismus genetika MeSH
- klíčení genetika fyziologie MeSH
- lokus kvantitativního znaku genetika fyziologie MeSH
- mapování chromozomů MeSH
- pšenice genetika růst a vývoj MeSH
- rostlinné geny genetika fyziologie MeSH
- vegetační klid genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The sulfurea (sulf) allele is a silent epigenetic variant of a tomato (Solanum lycopersicum) gene affecting pigment production. It is homozygous lethal but, in a heterozygote sulf/+, the wild-type (wt) allele undergoes silencing so that the plants exhibit chlorotic sectors. This transfer of the silenced state between alleles is termed paramutation and is best characterized in maize. To understand the mechanism of paramutation we mapped SULF to the orthologue SLTAB2 of an Arabidopsis gene that, consistent with the pigment deficiency, is involved in the translation of photosystem I. Paramutation of SLTAB2 is linked to an increase in DNA methylation and the production of small interfering RNAs at its promoter. Virus-induced gene silencing of SLTAB2 phenocopies sulf, consistent with the possibility that siRNAs mediate the paramutation of SULFUREA Unlike the maize systems, the paramutagenicity of sulf is not, however, associated with repeated sequences at the region of siRNA production or DNA methylation.
- MeSH
- alely MeSH
- Arabidopsis genetika MeSH
- epigeneze genetická genetika MeSH
- fotosystém I - proteinový komplex genetika MeSH
- kukuřice setá genetika MeSH
- metylace DNA genetika MeSH
- mutace genetika MeSH
- rostlinné geny genetika fyziologie MeSH
- Solanum lycopersicum genetika MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bread wheat (Triticum aestivum) inflorescences, or spikes, are characteristically unbranched and normally bear one spikelet per rachis node. Wheat mutants on which supernumerary spikelets (SSs) develop are particularly useful resources for work towards understanding the genetic mechanisms underlying wheat inflorescence architecture and, ultimately, yield components. Here, we report the characterization of genetically unrelated mutants leading to the identification of the wheat FRIZZY PANICLE (FZP) gene, encoding a member of the APETALA2/Ethylene Response Factor transcription factor family, which drives the SS trait in bread wheat. Structural and functional characterization of the three wheat FZP homoeologous genes (WFZP) revealed that coding mutations of WFZP-D cause the SS phenotype, with the most severe effect when WFZP-D lesions are combined with a frameshift mutation in WFZP-A. We provide WFZP-based resources that may be useful for genetic manipulations with the aim of improving bread wheat yield by increasing grain number.