Aortic dissection is a life-threatening disease that consists in the development of a tear in the wall of the aorta. The initial tear propagates as a discontinuity leading to separation within the aortic wall, which can result in the creation of a so-called false lumen. A fatal threat occurs if the rupture extends through the whole thickness of the aortic wall, as blood may then leak. It is generally accepted that the dissection, which can sometime extend along the entire length of the aorta, propagates via a delamination mechanism. The aim of the present paper is to provide experimentally validated parameters of a mathematical model for the description of the wall's cohesion. A model of the peeling experiment was built in Abaqus. The delamination interface was described by a piecewise linear traction-separation law. The bulk behavior of the aorta was assumed to be nonlinearly elastic, anisotropic, and incompressible. Our simulations resulted in estimates of the material parameters for the traction-separation law of the human descending thoracic aorta, which were obtained by minimizing the differences between the FEM predictions and the delamination force given by the regression of the peeling experiments. The results show that the stress at damage initiation, Tc, should be understood as an age-dependent quantity, and under the assumptions of our model this dependence can be expressed by linear regression as Tc = - 13.03·10-4·Age + 0.2485 if the crack front advances in the axial direction, and Tc = - 7.58·10-4·Age + 0.1897 if the crack front advances in the direction of the aortic circumference (Tc [MPa], Age [years]). Other model parameters were the stiffness K and the separation at failure, δf-δc (K = 0.5 MPa/mm, δf-δc = 0.1 mm). The material parameters provided by our study can be used in numerical simulations of the biomechanics of dissection propagation through the aorta especially when age-associated phenomena are studied.
- MeSH
- analýza metodou konečných prvků MeSH
- aorta thoracica * fyziologie MeSH
- biomechanika MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mechanický stres MeSH
- modely kardiovaskulární MeSH
- počítačová simulace MeSH
- senioři MeSH
- stárnutí fyziologie MeSH
- trakce MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
Articular cartilage is a complex, anisotropic, stratified tissue with remarkable resilience and mechanical properties. It has been subject to extensive modelling as a multiphase medium, with many recent studies examining the impact of increasing detail in the representation of this tissue's fine scale structure. However, further investigation of simple models with minimal constitutive relations can nonetheless inform our understanding at the foundations of soft tissue simulation. Here, we focus on the impact of heterogeneity with regard to the volume fractions of solid and fluid within the cartilage. Once swelling pressure due to cartilage fixed charge is also present, we demonstrate that the multiphase modelling framework is substantially more complicated, and thus investigate this complexity, especially in the simple setting of a confined compression experiment. Our findings highlight the importance of locally, and thus heterogeneously, approaching pore compaction for load bearing in cartilage models, while emphasising that such effects can be represented by simple constitutive relations. In addition, simulation predictions are observed for the sensitivity of stress and displacement in the cartilage to variations in the initial state of the cartilage and thus the details of experimental protocol, once the tissue is heterogeneous. These findings are for the simplest models given only heterogeneity in volume fractions and swelling pressure, further emphasising that the complex behaviours associated with the interaction of volume fraction heterogeneity and swelling pressure are likely to persist for simulations of cartilage representations with more fine-grained structural detail of the tissue.
Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.
It is known that large arteries in situ are subjected to significant axial prestretch. This prestretch plays an important physiological role in optimizing the biomechanical response of an artery. It is also known that the prestretch declines with age. However, a detailed description of age-related changes in prestretch is available only for the abdominal aorta and for the femoropliteal artery. Our study presents results of measurements of axial prestretch in 229 left common carotid arteries excised in autopsies. It was found that the prestretch of the carotid artery correlates significantly with age ([Formula: see text], p value < 0.001). A linear regression model was used to fit the observations. Simultaneously with the measurement of the prestretch in the carotid artery, the axial prestretch was also measured in abdominal aorta. By comparing data obtained from these locations, it was concluded that the axial prestretch in the carotid artery is greater than in the abdominal aorta, and that atherosclerosis develops more rapidly in the abdominal aorta than in the carotid artery. Histological sections obtained from 8 carotid arteries and aortas suggest that the medial layer of the left common carotid artery is significantly thinner than aortic media (median/IQR: 0.343/0.086 vs. 0.482/0.172 mm, [Formula: see text] in Wilcoxon signed-rank test) and simultaneously that carotid media contains a lower number of elastic membranes (median/IQR: 26.5/11.8 vs. 31.5/11.8, [Formula: see text] in the Wilcoxon signed-rank test). This could be a reason for the different extent of the prestretch observed in aorta and in carotid artery. Our data sample also contains 5 measurements of the axial prestretch in abdominal aortas suffering from an aneurysm. It was found that aneurysmatic aortas also exhibit axial retraction when excised from in situ position. To the best of our knowledge, this is the first time that detailed data characterizing axial prestretch of the human left common carotid artery have been presented.
- MeSH
- aneurysma patologie MeSH
- aorta abdominalis fyziologie MeSH
- arteriae carotides fyziologie MeSH
- ateroskleróza patologie MeSH
- biofyzikální jevy * MeSH
- biologické modely * MeSH
- lidé MeSH
- lineární modely MeSH
- věkové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The response to the mechanical loading of bone tissue has been extensively investigated; however, precisely how much strain intensity is necessary to promote bone formation remains unclear. Combination studies utilizing histomorphometric and numerical analyses were performed using the established murine maxilla loading model to clarify the threshold of mechanical strain needed to accelerate bone formation activity. For 7 days, 191 kPa loading stimulation for 30 min/day was applied to C57BL/6J mice. Two regions of interest, the AWAY region (away from the loading site) and the NEAR region (near the loading site), were determined. The inflammatory score increased in the NEAR region, but not in the AWAY region. A strain intensity map obtained from [Formula: see text] images was superimposed onto the images of the bone formation inhibitor, sclerostin-positive cell localization. The number of sclerostin-positive cells significantly decreased after mechanical loading of more than [Formula: see text] in the AWAY region, but not in the NEAR region. The mineral apposition rate, which shows the bone formation ability of osteoblasts, was accelerated at the site of surface strain intensity, namely around [Formula: see text], but not at the site of lower surface strain intensity, which was around [Formula: see text] in the AWAY region, thus suggesting the existence of a strain intensity threshold for promoting bone formation. Taken together, our data suggest that a threshold of mechanical strain intensity for the direct activation of osteoblast function and the reduction of sclerostin exists in a murine maxilla loading model in the non-inflammatory region.
- MeSH
- biologické modely * MeSH
- glykoproteiny metabolismus MeSH
- kostní denzita MeSH
- maxila cytologie fyziologie MeSH
- mechanický stres * MeSH
- myši inbrední C57BL MeSH
- osteoblasty fyziologie MeSH
- osteocyty cytologie MeSH
- osteogeneze MeSH
- počet buněk MeSH
- zatížení muskuloskeletálního systému MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this article, the results of numerical simulations using computational fluid dynamics (CFD) and a comparison with experiments performed with phase Doppler anemometry are presented. The simulations and experiments were conducted in a realistic model of the human airways, which comprised the throat, trachea and tracheobronchial tree up to the fourth generation. A full inspiration/expiration breathing cycle was used with tidal volumes 0.5 and 1 L, which correspond to a sedentary regime and deep breath, respectively. The length of the entire breathing cycle was 4 s, with inspiration and expiration each lasting 2 s. As a boundary condition for the CFD simulations, experimentally obtained flow rate distribution in 10 terminal airways was used with zero pressure resistance at the throat inlet. CCM+ CFD code (Adapco) was used with an SST k-ω low-Reynolds Number RANS model. The total number of polyhedral control volumes was 2.6 million with a time step of 0.001 s. Comparisons were made at several points in eight cross sections selected according to experiments in the trachea and the left and right bronchi. The results agree well with experiments involving the oscillation (temporal relocation) of flow structures in the majority of the cross sections and individual local positions. Velocity field simulation in several cross sections shows a very unstable flow field, which originates in the tracheal laryngeal jet and propagates far downstream with the formation of separation zones in both left and right airways. The RANS simulation agrees with the experiments in almost all the cross sections and shows unstable local flow structures and a quantitatively acceptable solution for the time-averaged flow field.
- MeSH
- biologické modely * MeSH
- biomechanika MeSH
- bronchy fyziologie MeSH
- časové faktory MeSH
- dýchání * MeSH
- lidé MeSH
- numerická analýza pomocí počítače * MeSH
- plicní ventilace fyziologie MeSH
- trachea fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
The aeroacoustic mechanisms in human voice production are complex coupled processes that are still not fully understood. In this article, a hybrid numerical approach to analyzing sound generation in human voice production is presented. First, the fluid flow problem is solved using a parallel finite-volume computational fluid dynamics (CFD) solver on a fine computational mesh covering the larynx. The CFD simulations are run for four geometrical configurations: both with and without false vocal folds, and with fixed convergent or convergent-divergent motion of the medial vocal fold surface. Then the aeroacoustic sources and propagation of sound waves are calculated using Lighthill's analogy or acoustic perturbation equations on a coarse mesh covering the larynx, vocal tract, and radiation region near the mouth. Aeroacoustic sound sources are investigated in the time and frequency domains to determine their precise origin and correlation with the flow field. The problem of acoustic wave propagation from the larynx and vocal tract into the free field is solved using the finite-element method. Two different vocal-tract shapes are considered and modeled according to MRI vocal-tract data of the vowels /i/ and /u/. The spectra of the radiated sound evaluated from acoustic simulations show good agreement with formant frequencies known from human subjects.
- MeSH
- akustika * MeSH
- hlas * MeSH
- hlasové řasy fyziologie MeSH
- larynx fyziologie MeSH
- lidé MeSH
- vzduch * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The orientation of vascular smooth muscle cells of porcine aortae was assessed to test the widely accepted assumption that these smooth muscle cells are arranged in two helices. We used tangential histological sections of 82 samples of five anatomical segments of thoracic and abdominal porcine aortae and three age groups in animals ranging in age from 5 to 210 days. The distribution of the orientation of smooth muscle cell nuclei in five proximodistal segments of the porcine aortae was determined using an algorithm that fitted a mixture of one to five von Mises probability distributions of the data retrieved from histological micrographs. Automated tracking of the nuclei was confirmed by and consistent with manual histological analysis. The orientation of the vascular smooth muscle cells was successfully fitted using two von Mises distributions in most of the samples with different ages, wall thicknesses, and anatomical positions, which corresponds to two populations of vascular smooth muscle cells. A minor fraction of samples also required a tertiary von Mises distribution to describe the orientation of the smooth muscle cell nuclei. The distribution of vascular smooth muscle cells in five aortic segments ranging from the thoracic ascending aorta to the abdominal intrarenal aorta exhibited similar main directions but different shapes. These results are consistent with the widely used model of two muscular helices intermingling in the arterial wall. Furthermore, we calculated the central angles of symmetry and the mean value of angles between the two assumed smooth muscle directions. We also successfully approximated the orientation of the smooth muscle cells using a mixture of von Mises distributions and our open-source software named dist_mixtures. This method is openly available to researchers who are interested in mathematically assessing the orientation of cell nuclei in various tissues.
- MeSH
- algoritmy MeSH
- aorta fyziologie MeSH
- buněčné jádro metabolismus MeSH
- mechanický stres MeSH
- myocyty hladké svaloviny fyziologie MeSH
- software MeSH
- stárnutí fyziologie MeSH
- Sus scrofa MeSH
- svaly hladké cévní cytologie MeSH
- tunica intima fyziologie MeSH
- tunica media fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Elastic arteries are significantly prestretched in an axial direction. This property minimises axial deformations during pressure cycle. Ageing-induced changes in arterial biomechanics, among others, are manifested via a marked decrease in the prestretch. Although this fact is well known, little attention has been paid to the effect of decreased prestretch on mechanical response. Our study presents the results of an analytical simulation of the inflation-extension behaviour of the human abdominal aorta treated as nonlinear, anisotropic, prestrained thin-walled as well as thick-walled tube with closed ends. The constitutive parameters and geometries for 17 aortas adopted from the literature were supplemented with initial axial prestretches obtained from the statistics of 365 autopsy measurements. For each aorta, the inflation-extension response was calculated three times, with the expected value of the initial prestretch and with the upper and lower confidence limit of the initial prestretch derived from the statistics. This approach enabled age-related trends to be evaluated bearing in mind the uncertainty in the prestretch. Despite significantly decreased longitudinal prestretch with age, the biomechanical response of human abdominal aorta changes substantially depending on the initial axial stretch was used. In particular, substituting the upper limit of initial prestretch gave mechanical responses which can be characterised by (1) low variation in axial stretch and (2) high circumferential distensibility during pressurisation, in contrast to the responses obtained for their weakly prestretched counterparts. The simulation also suggested the significant effect of the axial prestretch on the variation of axial stress in the pressure cycle. Finally, the obtained results are in accordance with the hypothesis that circumferential-to-axial stiffness ratio is the quantity relatively constant within this cycle.
- MeSH
- anizotropie MeSH
- aorta abdominalis patofyziologie MeSH
- aorta fyziologie MeSH
- arterie patologie MeSH
- biomechanika MeSH
- diastola MeSH
- dospělí MeSH
- krevní tlak MeSH
- lidé středního věku MeSH
- lidé MeSH
- lineární modely MeSH
- mechanický stres * MeSH
- modely kardiovaskulární MeSH
- pitva MeSH
- počítačová simulace MeSH
- pružnost MeSH
- reprodukovatelnost výsledků MeSH
- senioři MeSH
- stárnutí MeSH
- systola MeSH
- tlak MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH