Ageing is a complex phenomenon affecting a wide range of coexisting biological processes. The homogeneity of the studied population is an essential parameter for valid interpretations of outcomes. The presented study capitalises on the MRI data available in the Human Connectome Project-Aging (HCP-A) and, within individuals over 55 years of age who passed the HCP-A section criteria, compares a subgroup of 37 apparently neurocognitively healthy individuals selected based on stringent criteria with 37 age and sex-matched individuals still representative of typical ageing but who did not pass the stringent definition of neurocognitively healthy. Specifically, structural scans, diffusion weighted imaging and T1w/T2w ratio were utilised. Furthermore, data of 26 HCP-A participants older than 90 years as notional 'super-agers' were analysed. The relationship of age and several microstructural MRI metrics (T1w/T2w ratio, mean diffusivity, intracellular volume fraction and free water volume fraction) differed significantly between typical and healthy ageing cohort in areas highly relevant for ageing such as hippocampus, prefrontal and temporal cortex and cerebellum. However, the trajectories of the healthy ageing population did not show substantially better overlap with the findings in people older than 90 than those of the typical population. Therefore, caution must be exercised in the choice of adequate study group characteristics relevant for respective ageing-related hypotheses. Contrary to typical ageing group, the healthy ageing cohort may show generally stable levels of several MRI metrics of interest.
- MeSH
- kognice * fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek diagnostické zobrazování MeSH
- šedá hmota * diagnostické zobrazování MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stárnutí * fyziologie MeSH
- zdravé stárnutí fyziologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
INTRODUCTION: The aging process is intricately linked to alterations in cellular and tissue structures, with the respiratory system being particularly susceptible to age-related changes. Therefore, this study aimed to profile the activity of proteases using activity-based probes in lung tissues of old and young rats, focusing on the expression levels of different, in particular cathepsins G and X and matrix Metalloproteinases (MMPs). Additionally, the impact on extracellular matrix (ECM) components, particularly fibronectin, in relation to age-related histological and ultrastructural changes in lung tissues was investigated. MATERIALS AND METHODS: Lung tissues from old and young rats were subjected to activity-based probe profiling to assess the activity of different proteases. Expression levels of cathepsins G and X were quantified, and zymography was performed to evaluate matrix metalloproteinases activity. Furthermore, ECM components, specifically fibronectin, were examined for signs of degradation in the old lung tissues compared to the young ones. Moreover, histological, immunohistochemical and ultrastructural assessments of old and young lung tissue were also conducted. RESULTS: Our results showed that the expression levels of cathepsins G and X were notably higher in old rat lung tissues in contrast to those in young rat lung tissues. Zymography analysis revealed elevated MMP activity in the old lung tissues compared to the young ones. Particularly, significant degradation of fibronectin, an essential ECM component, was observed in the old lung tissues. Numerous histological and ultrastructural alterations were observed in old lung tissues compared to young lung tissues. DISCUSSION AND CONCLUSION: The findings indicate an age-related upregulation of cathepsins G and X along with heightened MMP activity in old rat lung tissues, potentially contributing to the degradation of fibronectin within the ECM. These alterations highlight potential mechanisms underlying age-associated changes in lung tissue integrity and provide insights into protease-mediated ECM remodeling in the context of aging lungs.
- MeSH
- extracelulární matrix metabolismus ultrastruktura MeSH
- fibronektiny * metabolismus MeSH
- kathepsin G metabolismus MeSH
- krysa rodu rattus MeSH
- lyzozomy ultrastruktura metabolismus MeSH
- matrixové metaloproteinasy metabolismus MeSH
- plíce * ultrastruktura metabolismus MeSH
- proteasy metabolismus MeSH
- stárnutí * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
- MeSH
- chronická nemoc MeSH
- chronická obstrukční plicní nemoc metabolismus farmakoterapie imunologie MeSH
- lidé MeSH
- metabolické sítě a dráhy * MeSH
- plicní nemoci etiologie farmakoterapie metabolismus imunologie MeSH
- stárnutí buněk * účinky léků MeSH
- stárnutí imunologie metabolismus MeSH
- zánět metabolismus imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Non-formal adult education and learning (NAE) is widely recognized as enhancing the quality of life and promoting active aging. Despite the empirically demonstrated benefits, older adults rank among one of the populations participating the least in NAE. Although several studies have highlighted the negative effect of aging on involvement in NAE, factors causing long-term changes in participation have not been explored directly. As a result, the significance of microsocial characteristics and their transformation over time has been overlooked. This article explores key microsocial factors leading to non/participation in NAE among adults aged 50 to 69 years along with changes in these factors for the 14-year period of 2006 to 2019. The research was conducted using the Czech Republic's Labor Force Survey dataset (N = 114,345). The results show that all microsocial factors play an essential role in determining participation in NAE, thus a strong relationship between the social origins (cumulative disadvantage) of older adults and their participation was confirmed. In addition, the impact of most factors has proved consistent over time, not strengthening since 2009. One exception was level of education, which showed a rapid increase in participation in NAE in the respondents who identified themselves as low-educated.
- MeSH
- geriatrie * výchova MeSH
- kvalita života * MeSH
- lidé MeSH
- senioři MeSH
- stárnutí MeSH
- stupeň vzdělání MeSH
- zaměstnanost MeSH
- zapojení do společnosti MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
STUDY QUESTION: Can oocyte functionality be assessed by observing changes in their intracytoplasmic lipid droplets (LDs) profiles? SUMMARY ANSWER: Lipid profile changes can reliably be detected in human oocytes; lipid changes are linked with maternal age and impaired developmental competence in a mouse model. WHAT IS KNOWN ALREADY: In all cellular components, lipid damage is the earliest manifestation of oxidative stress (OS), which leads to a cascade of negative consequences for organelles and DNA. Lipid damage is marked by the accumulation of LDs. We hypothesized that impaired oocyte functionality resulting from aging and associated OS could be assessed by changes in LDs profile, hereafter called lipid fingerprint (LF). STUDY DESIGN, SIZE, DURATION: To investigate if it is possible to detect differences in oocyte LF, we subjected human GV-stage oocytes to spectroscopic examinations. For this, a total of 48 oocytes derived from 26 young healthy women (under 33 years of age) with no history of infertility, enrolled in an oocyte donation program, were analyzed. Furthermore, 30 GV human oocytes from 12 women were analyzed by transmission electron microscopy (TEM). To evaluate the effect of oocytes' lipid profile changes on embryo development, a total of 52 C57BL/6 wild-type mice and 125 Gnpat+/- mice were also used. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human oocytes were assessed by label-free cell imaging via coherent anti-Stokes Raman spectroscopy (CARS). Further confirmation of LF changes was conducted using spontaneous Raman followed by Fourier transform infrared (FTIR) spectroscopies and TEM. Additionally, to evaluate whether LF changes are associated with developmental competence, mouse oocytes and blastocysts were evaluated using TEM and the lipid dyes BODIPY and Nile Red. Mouse embryonic exosomes were evaluated using flow cytometry, FTIR and FT-Raman spectroscopies. MAIN RESULTS AND THE ROLE OF CHANCE: Here we demonstrated progressive changes in the LF of oocytes associated with the woman's age consisting of increased LDs size, area, and number. LF variations in oocytes were detectable also within individual donors. This finding makes LF assessment a promising tool to grade oocytes of the same patient, based on their quality. We next demonstrated age-associated changes in oocytes reflected by lipid peroxidation and composition changes; the accumulation of carotenoids; and alterations of structural properties of lipid bilayers. Finally, using a mouse model, we showed that LF changes in oocytes are negatively associated with the secretion of embryonic exosomes prior to implantation. Deficient exosome secretion disrupts communication between the embryo and the uterus and thus may explain recurrent implantation failures in advanced-age patients. LIMITATIONS, REASONS FOR CAUTION: Due to differences in lipid content between different species' oocytes, the developmental impact of lipid oxidation and consequent LF changes may differ across mammalian oocytes. WIDER IMPLICATIONS OF THE FINDINGS: Our findings open the possibility to develop an innovative tool for oocyte assessment and highlight likely functional connections between oocyte LDs and embryonic exosome secretion. By recognizing the role of oocyte LF in shaping the embryo's ability to implant, our original work points to future directions of research relevant to developmental biology and reproductive medicine. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by National Science Centre of Poland, Grants: 2021/41/B/NZ3/03507 and 2019/35/B/NZ4/03547 (to G.E.P.); 2022/44/C/NZ4/00076 (to M.F.H.) and 2019/35/N/NZ3/03213 (to Ł.G.). M.F.H. is a National Agency for Academic Exchange (NAWA) fellow (GA ULM/2019/1/00097/U/00001). K.F. is a Diamond Grant fellow (Ministry of Education and Science GA 0175/DIA/2019/28). The open-access publication of this article was funded by the Priority Research Area BioS under the program "Excellence Initiative - Research University" at the Jagiellonian University in Krakow. The authors declare no competing interest. TRIAL REGISTRATION NUMBER: N/A.
- MeSH
- dospělí MeSH
- embryonální vývoj fyziologie MeSH
- lidé MeSH
- lipidová tělíska metabolismus MeSH
- metabolismus lipidů MeSH
- myši inbrední C57BL * MeSH
- myši MeSH
- oocyty * metabolismus MeSH
- oxidační stres MeSH
- Ramanova spektroskopie MeSH
- stárnutí metabolismus MeSH
- transmisní elektronová mikroskopie MeSH
- věk matky MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
- MeSH
- autoimunita * MeSH
- hojení ran * imunologie MeSH
- interleukin-6 * metabolismus imunologie MeSH
- lidé MeSH
- nádorové mikroprostředí * imunologie MeSH
- nádory * imunologie metabolismus patologie MeSH
- stárnutí * imunologie MeSH
- zánět * imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biological mechanisms related to cancer development can leave distinct molecular fingerprints in tumours. By leveraging multi-omics and epidemiological information, we can unveil relationships between carcinogenesis processes that would otherwise remain hidden. Our integrative analysis of DNA methylome, transcriptome, and somatic mutation profiles of kidney tumours linked ageing, epithelial-mesenchymal transition (EMT), and xenobiotic metabolism to kidney carcinogenesis. Ageing process was represented by associations with cellular mitotic clocks such as epiTOC2, SBS1, telomere length, and PBRM1 and SETD2 mutations, which ticked faster as tumours progressed. We identified a relationship between BAP1 driver mutations and the epigenetic upregulation of EMT genes (IL20RB and WT1), correlating with increased tumour immune infiltration, advanced stage, and poorer patient survival. We also observed an interaction between epigenetic silencing of the xenobiotic metabolism gene GSTP1 and tobacco use, suggesting a link to genotoxic effects and impaired xenobiotic metabolism. Our pan-cancer analysis showed these relationships in other tumour types. Our study enhances the understanding of kidney carcinogenesis and its relation to risk factors and progression, with implications for other tumour types.
- MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- epigeneze genetická MeSH
- epitelo-mezenchymální tranzice * genetika MeSH
- glutathion-S-transferasa fí genetika metabolismus MeSH
- histonlysin-N-methyltransferasa genetika metabolismus MeSH
- karcinogeneze * genetika MeSH
- lidé MeSH
- metylace DNA * MeSH
- multiomika MeSH
- mutace * MeSH
- nádorové supresorové proteiny genetika metabolismus MeSH
- nádory ledvin * genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- stárnutí genetika MeSH
- thiolesterasa ubikvitinu MeSH
- transkripční faktory genetika metabolismus MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE OF THE REVIEW: The purpose of this Review was to summarize the evidence on the associations among estrogen status, cellular senescence, the gut microbiome and osteoporosis. RECENT FINDINGS: Indicate that osteoporosis is a global public health problem that impacts individuals and society. In postmenopausal women, a decrease in estrogen levels is associated with a decrease in gut microbial diversity and richness, as well as increased permeability of the gut barrier, which allows for low-grade inflammation. The direct effects of estrogen status on the association between bone and the gut microbiome were observed in untreated and treated ovariectomized women. In addition to the direct effects of estrogens on bone remodeling, estrogen therapy could reduce the risk of postmenopausal osteoporosis by preventing increased gut epithelial permeability, bacterial translocation and inflammaging. However, in studies comparing the gut microbiota of older women, there were no changes at the phylum level, suggesting that age-related comorbidities may have a greater impact on changes in the gut microbiota than menopausal status does. Estrogens modify bone health not only by directly influencing bone remodeling, but also indirectly by influencing the gut microbiota, gut barrier function and the resulting changes in immune system reactivity.
- MeSH
- estrogeny * MeSH
- lidé MeSH
- osteoporóza MeSH
- postmenopauzální osteoporóza * MeSH
- remodelace kosti * MeSH
- stárnutí buněk MeSH
- střevní mikroflóra * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Pochopení vztahu mezi senzomotorickými proměnnými a exerkiny, které ovlivňují funkci mozku a kognici, nám umožňuje hlouběji porozumět biologickému procesu stárnutí. Hlavním cílem této studie bylo zjistit, jak silně jsou mozkový neurotrofický faktor (brain-derived neurotrophic factor, BDNF), irisin, svalová hmota a svalová síla asociovány s výsledky testů vybraných kognitivních funkcí u starších žen a jak dobře je predikují. Padesát sedm starších žen (průměrný věk 70,4 ± 4,1 roku) absolvovalo baterii neuropsychologických testů, měření izometrické dynamometrie a bioelektrické impedance. Hladiny v krevním séru sledovaných exerkinů byly stanoveny enzymatickým imunosorbentním testem (ELISA). Pro testování predikcí byly využity hierarchické vícenásobné regresní modely. Odhadli jsme, že rozptyl 46,1 % v krátkodobé paměti byl zapříčiněn hladinami BDNF v séru, přičemž druhým statisticky významným prediktorem byl věk (beta = –0,22; p = 0,030). Síla dolních končetin (lower limb strength, LLS) prokázala významnou prediktivní sílu jak u paměti – bezprostřední vybavení (beta = 0,39; p = 0,004), tak u paměti – oddálené vybavení (beta = 0,45; p = 0,001). Hladiny BDNF v séru byly významným prediktorem u oddáleného vybavení (beta = 0,29; p = 0,048). Přidání hladin BDNF do modelu prokázalo významné zvýšení jeho prediktivní síly o přibližně 5,6 % (p = 0,048) u paměti – oddálené vybavení. Index kosterní svalové hmoty (skeletal muscle index, SMI) a úroveň vzdělání byly významnými prediktory mentální flexibility. Byla zjištěna silná pozitivní asociace mezi hladinami BDNF, irisinem, svalovou silou a kognitivní funkcí, přičemž irisin a svalová síla jsou silnými prediktory hladin BDNF u starších žen. Studie byla realizována s podporou grantu Univerzity Karlovy – PRIMUS/19/HUM/012, Specifického vysokoškolského výzkumu SVV 260599, projektu COOPERATIO a Grantové agentury UK číslo grantu 268321. Korespondenční adresa: PhDr. Veronika Holá Katedra gymnastiky a úpolových sportů FTVS UK José Martího 269/31 162 52 Praha 6-Veleslavín e-mail: veronika.hola@ftvs.cuni.cz
Understanding the relationship between sensorimotor variables and exerkines related to brain function and cognition may help better understand biological ageing. The main aim of this study was to determine how strongly brain-derived neurotrophic factor (BDNF), irisin, muscle mass and muscle strength are associated and predict scores on selected cognitive domain tests in older women. Fifty seven older women (mean age 70.4 ± 4.1 years) underwent a battery of cognitive and psychological tests and measurements of isometric dynamometry and bioelectrical impedance. Serum exerkines levels were measured by enzyme-linked immunosorbent assay (ELISA). Hierarchical multiple regression models were used to test the predictions. We estimated that 46.1% of the variance in short-term memory was accounted for by serum BDNF levels, with age being the second statistically significant predictor (Beta = -0.22; p = 0.030). Lower limb strength (LLS) showed significant predictive power in both immediate (Beta = 0.39; p = 0.004) and delayed memory (Beta = 0.45; p = 0.001), serum BDNF levels were a significant predictor in delayed memory (Beta = 0.29; p = 0.048). Adding serum BDNF levels to the model showed a significant increase in predictive power of approximately 5.6% (p = 0.048) in delayed memory. Skeletal muscle index (SMI) and education level were significant predictors of mental flexibility. A strong positive association between BDNF levels, irisin, muscle strength, and cognitive function was found, with irisin and muscle strength being strong predictors of BDNF levels in older women.
- Klíčová slova
- irisin,
- MeSH
- fibronektinová doména typu III fyziologie MeSH
- kognice fyziologie MeSH
- kognitivní stárnutí * fyziologie MeSH
- lidé MeSH
- mozkový neurotrofický faktor krev MeSH
- neuropsychologické testy * statistika a číselné údaje MeSH
- paměť fyziologie MeSH
- prognóza MeSH
- průřezové studie MeSH
- regresní analýza MeSH
- senioři MeSH
- svalová atrofie etiologie MeSH
- svalová síla fyziologie MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH