The forskolin-induced swelling assay (FIS) in patient-derived intestinal organoids (PDIOs), used to determine in vitro responsiveness to elexacaftor/tezacaftor/ivacaftor (ETI), showed variability in swelling among PDIOs obtained from people with CF (pwCF) carrying the same F508del/F508del CFTR genotype. We aimed to characterise the effect of ETI on the transcriptional activity of PDIOs-derived cells to understand the intracellular processes triggered by ETI and the differences in treatment response. Six high- and six low-responding PDIOs to ETI, derived from F508del/F508del pwCF, were incubated with or without ETI for 2 to 6 h. Gene expression was assessed using 3'-mRNA sequencing and modelled using negative binomial models. Incubation with ETI resulted in a significant upregulation of several biological processes: mostly related to chemokines and signalling, chemotaxis, and tissue development processes. No changes were observed in abundance of the CFTR transcripts or in CFTR-related gene sets and pathways. The genes and pathways associated with ETI did not overlap with those whose expression changed with time only. PDIOs with a high FIS response did not significantly differ in any interpretable gene from the FIS-low organoids. The changes in the PDIOs gene expression upon the exposure to ETI cannot explain differences in the magnitude of PDIOs FIS-measured response to ETI. In conclusion, on incubation with ETI, genes of the CFTR-related pathways do not change their transcriptional activity; instead, overexpression was observed in genes of inflammatory-like cytokine response and receptor activation pathways.
- MeSH
- Chloride Channel Agonists therapeutic use pharmacology MeSH
- Aminophenols * therapeutic use pharmacology MeSH
- Benzodioxoles * therapeutic use pharmacology MeSH
- Quinolones * pharmacology therapeutic use MeSH
- Cystic Fibrosis * genetics drug therapy MeSH
- Drug Combinations MeSH
- Indoles * pharmacology MeSH
- Humans MeSH
- Organoids * metabolism MeSH
- Cystic Fibrosis Transmembrane Conductance Regulator genetics MeSH
- Pyrazoles * pharmacology MeSH
- Pyridines pharmacology MeSH
- Pyrrolidines pharmacology MeSH
- Pyrroles pharmacology MeSH
- Gene Expression Profiling methods MeSH
- Intestines drug effects MeSH
- Transcriptome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Clear-cell renal cell carcinoma (ccRCC) is a common urological malignancy with an increasing incidence. The development of molecular biomarkers that can predict the response to treatment and guide personalized therapy selection would substantially improve patient outcomes. Dysregulation of non-coding RNA (ncRNA) has been shown to have a role in the pathogenesis of ccRCC. Thus, an increasing number of studies are being carried out with a focus on the identification of ncRNA biomarkers in ccRCC tissue samples and the connection of these markers with patients' prognosis, pathological stage and grade (including metastatic potential), and therapy outcome. RNA sequencing analysis led to the identification of several ncRNA biomarkers that are dysregulated in ccRCC and might have a role in ccRCC development. These ncRNAs have the potential to be prognostic and predictive biomarkers for ccRCC, with prospective applications in personalized treatment selection. Research on ncRNA biomarkers in ccRCC is advancing, but clinical implementation remains preliminary owing to challenges in validation, standardization and reproducibility. Comprehensive studies and integration of ncRNAs into clinical trials are essential to accelerate the clinical use of these biomarkers.
- MeSH
- Carcinoma, Renal Cell * genetics diagnosis MeSH
- Humans MeSH
- Biomarkers, Tumor * genetics MeSH
- Kidney Neoplasms * genetics diagnosis MeSH
- RNA, Untranslated * genetics MeSH
- Prognosis MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Gene Expression Profiling MeSH
- Transcriptome * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Euglenids have long been studied due to their unique physiology and versatile metabolism, providing underpinnings for much of our understanding of photosynthesis and biochemistry, and a growing opportunity in biotechnology. Until recently there has been a lack of genetic studies due to their large and complex genomes, but recently new technologies have begun to unveil their genetic capabilities. Whilst much research has focused on the model organism Euglena gracilis, other members of the euglenids have now started to receive due attention. Currently only poor nuclear genome assemblies of E. gracilis and Rhabdomonas costata are available, but there are many more plastid genome sequences and an increasing number of transcriptomes. As more assemblies become available, there are great opportunities to understand the fundamental biology of these organisms and to exploit them for biotechnology.
INTRODUCTION: Amyloid precursor protein (APP) undergoes striking changes following traumatic brain injury (TBI). Considering its role in the control of gene expression, we investigated whether APP regulates transcription and translation following TBI. METHODS: We assessed brain morphology (n = 4-9 mice/group), transcriptome (n = 3 mice/group), proteome (n = 3 mice/group), and behavior (n = 17-27 mice/group) of wild-type (WT) and APP knock-out (KO) mice either untreated or 10-weeks following TBI. RESULTS: After TBI, WT mice displayed transcriptional programs consistent with late stages of brain repair, hub genes were predicted to impact translation and brain proteome showed subtle changes. APP KO mice largely replicated this transcriptional repertoire, but showed no transcriptional nor translational response to TBI. DISCUSSION: The similarities between WT mice following TBI and APP KO mice suggest that developmental APP deficiency induces a condition reminiscent of late stages of brain repair, hampering the control of gene expression in response to injury. HIGHLIGHTS: 10-weeks after TBI, brains exhibit transcriptional profiles consistent with late stage of brain repair. Developmental APP deficiency maintains brains perpetually in an immature state akin to late stages of brain repair. APP responds to TBI by changes in gene expression at a transcriptional and translational level. APP deficiency precludes molecular brain changes in response to TBI.
- MeSH
- Amyloid beta-Protein Precursor * genetics MeSH
- Disease Models, Animal MeSH
- Brain * metabolism pathology MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Brain Injuries * metabolism genetics pathology MeSH
- Proteome * metabolism MeSH
- Proteomics MeSH
- Transcriptome * MeSH
- Brain Injuries, Traumatic * metabolism genetics pathology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Nonobese diabetic (NOD) mice are a widely used animal model to study mechanisms leading to autoimmune diabetes. A gluten-free diet reduces and delays the incidence of diabetes in NOD mice, but the underlying mechanisms remain largely unknown. In this study, we performed single-cell transcriptomic and flow cytometry analysis of T cells and innate lymphocytes in the spleen and pancreatic lymph nodes of NOD mice fed a gluten-free or standard diet. We observed that the gluten-free diet did not induce a substantial alteration in the abundance or phenotype of any lymphocyte subset that would directly explain its protective effect against diabetes. However, the gluten-free diet induced subtle changes in the differentiation of subsets with previously proposed protective roles in diabetes development, such as Tregs, activated γδT cells, and NKT cells. Globally, the gluten-free diet paradoxically promoted activation and effector differentiation across multiple subpopulations and induced genes regulated by IL-2, IL-7, and IL-15. In contrast, the standard diet induced type I interferon-responsive genes. Overall, the gluten-free diet might prevent diabetes in NOD mice by inducing small-scale changes in multiple cell types rather than acting on a specific lymphocyte subset.
- MeSH
- Lymphocyte Activation immunology MeSH
- Diet, Gluten-Free * MeSH
- Cell Differentiation MeSH
- Diabetes Mellitus, Type 1 * immunology MeSH
- Mice, Inbred NOD MeSH
- Mice MeSH
- T-Lymphocyte Subsets * immunology MeSH
- Transcriptome MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Expression of acute kidney injury-associated (AKI-associated) transcripts in kidney transplants may reflect recent injury and accumulation of epithelial cells in "failed repair" states. We hypothesized that the phenomenon of failed repair could be associated with deterioration and failure in kidney transplants. METHODS: We defined injury-induced transcriptome states in 4,502 kidney transplant biopsies injury-induced gene sets and classifiers previously developed in transplants. RESULTS: In principal component analysis (PCA), PC1 correlated with both acute and chronic kidney injury and related inflammation and PC2 with time posttransplant. Positive PC3 was a dimension that correlated with epithelial remodeling pathways and anticorrelated with inflammation. Both PC1 and PC3 correlated with reduced survival, with PC1 effects strongly increasing over time whereas PC3 effects were independent of time. In this model, we studied the expression of 12 "new" gene sets annotated in single-nucleus RNA-sequencing studies of epithelial cells with failed repair in native kidneys. The new gene sets reflecting epithelial-mesenchymal transition correlated with injury PC1 and PC3, lower estimated glomerular filtration rate, higher donor age, and future failure as strongly as any gene sets previously derived in transplants and were independent of nephron segment of origin and graft rejection. CONCLUSION: These results suggest 2 dimensions in the kidney transplant response to injury: PC1, AKI-induced changes, failed repair, and inflammation; and PC3, a response involving epithelial remodeling without inflammation. Increasing kidney age amplifies PC1 and PC3. TRIAL REGISTRATION: INTERCOMEX (ClinicalTrials.gov NCT01299168); Trifecta-Kidney (ClinicalTrials.gov NCT04239703). FUNDING: Genome Canada; Natera, Inc.; and Thermo Fisher Scientific.
- MeSH
- Acute Kidney Injury * pathology genetics MeSH
- Principal Component Analysis MeSH
- Biopsy MeSH
- Adult MeSH
- Epithelial-Mesenchymal Transition genetics MeSH
- Epithelial Cells * pathology metabolism MeSH
- Kidney pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Cross-Sectional Studies MeSH
- Graft Rejection * pathology genetics MeSH
- Aged MeSH
- Transcriptome MeSH
- Kidney Transplantation * adverse effects MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Observational Study MeSH
BACKGROUND: The canonical Wnt signaling pathway controls the continuous renewal of the intestinal epithelium and the specification of epithelial cell lineages. Tcf4, a nuclear mediator of Wnt signaling, is essential for the differentiation and maintenance of Paneth cells in the small intestine. Its deficiency is associated with reduced expression of key α-defensins, highlighting its role in host-microbe interactions. However, the exact function of Tcf4 in specifying the secretory lineage and its contribution to antimicrobial peptide production remain incompletely understood. Remarkably, α-defensin expression has also been detected in human colon adenomas, where aberrant Wnt signaling is a hallmark. This raises important questions: What is the role of these Paneth-like cells in tumor biology, and how does Tcf4 influence their identity and function? METHODS: We investigated cell specification in small intestinal crypts and colon tumors using conditional Tcf7l2 deletion, cell type-specific Cre recombinases, and reporter alleles in mice. Transcriptomic (single-cell and bulk RNA sequencing) and histological analyses were performed and complemented by microbiome profiling, antibiotic treatment, and intestinal organoids to functionally validate the main findings. RESULTS: The inactivation of Tcf4 depletes Paneth cells and antimicrobial peptides, disrupting the gut microbiota balance. In secretory progenitors, loss of Tcf4 shifts differentiation toward goblet cells. In the small intestine, alternative secretory progenitors produce Wnt ligands to support stem cells and epithelial renewal in the absence of Paneth cells. In colon tumors, Paneth-like cells form a tumor cell population, express Wnt ligands, and require Tcf4 for their identity. Loss of Tcf4 redirects their differentiation toward goblet cells. CONCLUSIONS: Tcf4 controls the balance between Paneth and goblet cells and is essential for antimicrobial peptide production in the small intestine. In colon adenomas, Paneth-like tumor cells drive antimicrobial gene expression and provide Wnt3 ligands, which may have implications for cancer therapy.
- MeSH
- alpha-Defensins metabolism MeSH
- Cell Differentiation MeSH
- Humans MeSH
- Mice MeSH
- Colonic Neoplasms * pathology genetics microbiology metabolism MeSH
- Organoids metabolism MeSH
- Paneth Cells metabolism MeSH
- Goblet Cells metabolism MeSH
- Wnt Signaling Pathway MeSH
- Gastrointestinal Microbiome * MeSH
- Intestine, Small * metabolism pathology microbiology MeSH
- Transcription Factor 4 * metabolism genetics MeSH
- Transcriptome * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Only a limited number of biomarkers guide personalized management of pancreatic neuroendocrine tumors (PanNETs). Transcriptome profiling of microRNA (miRs) and mRNA has shown value in segregating PanNETs and identifying patients more likely to respond to treatment. Because miRs are key regulators of mRNA expression, we sought to integrate expression data from both RNA species into miR-mRNA interaction networks to advance our understanding of PanNET biology. METHODS: We used deep miR/mRNA sequencing on six low-grade/high-risk, well-differentiated PanNETs compared with seven non-diseased tissues to identify differentially expressed miRs/mRNAs. Then we crossed a list of differentially expressed mRNAs with a list of in silico predicted mRNA targets of the most and least abundant miRs to generate high probability miR-mRNA interaction networks. RESULTS: Gene ontology and pathway analyses revealed several miR-mRNA pairs implicated in cellular processes and pathways suggesting perturbed neuroendocrine function (miR-7 and Reg family genes), cell adhesion (miR-216 family and NLGN1, NCAM1, and CNTN1; miR-670 and the claudins, CLDN1 and CLDN2), and metabolic processes (miR-670 and BCAT1/MPST; miR-129 and CTH). CONCLUSION: These novel miR-mRNA interaction networks identified dysregulated pathways not observed when assessing mRNA alone and provide a foundation for further investigation of their utility as diagnostic and predictive biomarkers.
- MeSH
- Gene Regulatory Networks MeSH
- Middle Aged MeSH
- Humans MeSH
- RNA, Messenger * genetics MeSH
- MicroRNAs * genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Pancreatic Neoplasms * genetics pathology diagnosis MeSH
- Neuroendocrine Tumors * genetics pathology diagnosis MeSH
- Pancreas * metabolism pathology MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Gene Expression Profiling MeSH
- Transcriptome MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Transcriptional activity and gene expression are critical for the development of mature, meiotically competent oocytes. Our study demonstrates that the absence of cyclin-dependent kinase 12 (CDK12) in oocytes leads to complete female sterility, as fully developed oocytes capable of completing meiosis I are absent from the ovaries. Mechanistically, CDK12 regulates RNA polymerase II activity in growing oocytes and ensures the maintenance of the physiological maternal transcriptome, which is essential for protein synthesis that drives further oocyte growth. Notably, CDK12-deficient growing oocytes exhibit a 71% reduction in transcriptional activity. Furthermore, impaired oocyte development disrupts folliculogenesis, leading to premature ovarian failure without terminal follicle maturation or ovulation. In conclusion, our findings identify CDK12 as a key master regulator of the oocyte transcriptional program and gene expression, indispensable for oocyte growth and female fertility. A schematic illustrating the effects of loss of CDK12 in mammalian oocytes on the regulation of transcription by polymerase II and the concomitant effects on translation. This disruption leads to an aberrant transcriptome and translatome, resulting in the absence of fully mature oocytes and ultimately female sterility.
- MeSH
- Cyclin-Dependent Kinases * metabolism genetics MeSH
- Meiosis genetics MeSH
- Mice MeSH
- Oocytes * metabolism MeSH
- RNA Polymerase II metabolism MeSH
- Transcriptome genetics MeSH
- Infertility, Female * genetics pathology metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Epitranscriptomics, the study of RNA modifications such as N6-methyladenosine (m6A), provides a novel layer of gene expression regulation with implications for numerous biological processes, including cellular adaptation to hypoxia. Hypoxia-inducible factor-1 (HIF-1), a master regulator of the cellular response to low oxygen, plays a critical role in adaptive and pathological processes, including cancer, ischemic heart disease, and metabolic disorders. Recent discoveries accent the dynamic interplay between m6A modifications and HIF-1 signaling, revealing a complex bidirectional regulatory network. While the roles of other RNA modifications in HIF-1 regulation remain largely unexplored, emerging evidence suggests their potential significance. MAIN BODY: This review examines the reciprocal regulation between HIF-1 and epitranscriptomic machinery, including m6A writers, readers, and erasers. HIF-1 modulates the expression of key m6A components, while its own mRNA is regulated by m6A modifications, positioning HIF-1 as both a regulator and a target in this system. This interaction enhances our understanding of cellular hypoxic responses and opens avenues for clinical applications in treating conditions like cancer and ischemic heart disease. Promising progress has been made in developing selective inhibitors targeting the m6A-HIF-1 regulatory axis. However, challenges such as off-target effects and the complexity of RNA modification dynamics remain significant barriers to clinical translation. CONCLUSION: The intricate interplay between m6A and HIF-1 highlights the critical role of epitranscriptomics in hypoxia-driven processes. Further research into these regulatory networks could drive therapeutic innovation in cancer, ischemic heart disease, and other hypoxia-related conditions. Overcoming challenges in specificity and off-target effects will be essential for realizing the potential of these emerging therapies.
- MeSH
- Adenosine analogs & derivatives metabolism MeSH
- Epigenesis, Genetic * MeSH
- Hypoxia-Inducible Factor 1 * metabolism genetics MeSH
- Humans MeSH
- RNA Processing, Post-Transcriptional MeSH
- Gene Expression Regulation MeSH
- Signal Transduction MeSH
- Transcriptome MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH