31444742 OR CD Study of the G-Quadruplex Conformation Dotaz Zobrazit nápovědu
Circular Dichroic (CD) spectroscopy is one of the most frequently used methods for guanine quadruplex studies and in general for studies of conformational properties of nucleic acids. The reason is its high sensitivity to even slight changes in mutual orientation of absorbing bases of DNA. CD can reveal formation of particular structural DNA arrangements and can be used to search for the conditions stabilizing the structures, to follow the transitions between various structural states, to explore kinetics of their appearance, to determine thermodynamic parameters, and also to detect formation of higher order structures. CD spectroscopy is an important complementary technique to NMR spectroscopy and X-ray diffraction in quadruplex studies due to its sensitivity, easy manipulation of studied samples, and relative inexpensiveness. In this part, we present the protocol for the use of CD spectroscopy in the study of guanine quadruplexes, together with practical advice and cautions about various, particularly interpretation, difficulties.
Electrochemical methods, particularly when applied in connection with mercury-containing electrodes, are excellent tools for studying nucleic acids structure and monitoring structural transitions. We studied the effect of the length of the central (dG) n stretch (varying from 0 to 15 guanine residues) in 15-mer oligodeoxynucleotides (ODN, G0 to G15) on their electrochemical and interfacial behavior at mercury and carbon electrodes. The intensity of guanine oxidation signal at the carbon electrode (peak G(ox)) was observed to increase continuously with number of guanines between 0 and 15, with only a slight positive shift for ODNs with seven or more guanines in the central segment. Very different effects were observed when the peak G(HMDE) was measured at the mercury electrode. Intensity of the latter signal increased with number of guanines up to G5, and decreased sharply with further elongation of the (dG) n stretch. CD spectroscopy and electrophoresis experiments revealed formation of parallel intermolecular quadruplex structures for ODNs containing five or more G residues. Further measurements made by cyclic and alternating-current voltammetry revealed a strong influence of the ODN structure on their behavior at electrically charged surfaces.
The G-quadruplex (G4)-forming sequence within the AS1411 derivatives with alternative nucleobases and backbones can improve the chemical and biological properties of AS1411. Zn(II) phthalocyanine (ZnPc) derivatives have potential as high-affinity G4 ligands because they have similar size and shape to the G-quartets. The interactions of four Zn(II) phthalocyanines with the G4 AS1411 aptamer and its derivatives were determined by biophysical techniques, molecular docking and gel electrophoresis. Cell viability assay was carried out to evaluate the antiproliferative effects of Zn(II) phthalocyanines and complexes. CD experiments showed structural changes after addition of ZnPc 4, consistent with multiple binding modes and conformations shown by NMR and gel electrophoresis. CD melting confirmed that ZnPc 2 and ZnPc 4, both containing eight positive charges, are able to stabilize the AT11 G4 structure (ΔTm > 30 °C and 18.5 °C, respectively). Molecular docking studies of ZnPc 3 and ZnPc 4 suggested a preferential binding to the 3'- and 5'-end, respectively, of the AT11 G4. ZnPc 3 and its AT11 and AT11-L0 complexes revealed pronounced cytotoxic effect against cervical cancer cells and no cytotoxicity to normal human cells. Zn(II) phthalocyanines provide the basis for the development of effective therapeutic agents as G4 ligands.
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- aptamery nukleotidové chemie farmakologie MeSH
- buněčné linie MeSH
- G-kvadruplexy MeSH
- HeLa buňky MeSH
- indoly chemie farmakologie MeSH
- lidé MeSH
- nádory farmakoterapie MeSH
- oligodeoxyribonukleotidy chemie farmakologie MeSH
- organokovové sloučeniny chemie farmakologie MeSH
- simulace molekulového dockingu MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Here we review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy. The conformational properties include the B-family of structures, A-form, Z-form, guanine quadruplexes, cytosine quadruplexes, triplexes and other less characterized structures. CD spectroscopy is extremely sensitive and relatively inexpensive. This fast and simple method can be used at low- as well as high-DNA concentrations and with short- as well as long-DNA molecules. The samples can easily be titrated with various agents to cause conformational isomerizations of DNA. The course of detected CD spectral changes makes possible to distinguish between gradual changes within a single DNA conformation and cooperative isomerizations between discrete structural states. It enables measuring kinetics of the appearance of particular conformers and determination of their thermodynamic parameters. In careful hands, CD spectroscopy is a valuable tool for mapping conformational properties of particular DNA molecules. Due to its numerous advantages, CD spectroscopy significantly participated in all basic conformational findings on DNA.
This study was performed to evaluate how the loss of a guanine base affects the structure and stability of the three-tetrad G-quadruplex of 5'-dG(3)(TTAG(3))(3), the basic quadruplex-forming unit of the human telomere DNA. None of the 12 possible abasic sites hindered the formation of quadruplexes, but all reduced the thermodynamic stability of the parent quadruplex in both NaCl and KCl. The base loss did not change the Na(+)-stabilized intramolecular antiparallel architecture, based on CD spectra, but held up the conformational change induced in dG(3)(TTAG(3))(3) in physiological concentration of KCl. The reduced stability and the inhibited conformational transitions observed here in vitro for the first time may predict that unrepaired abasic sites in G-quadruplexes could lead to changes in the chromosome's terminal protection in vivo.
BACKGROUND: The DNA lesions, resulting from oxidative damage, were shown to destabilize human telomere four-repeat quadruplex and to alter its structure. Long telomere DNA, as a repetitive sequence, offers, however, other mechanisms of dealing with the lesion: extrusion of the damaged repeat into loop or shifting the quadruplex position by one repeat. METHODS: Using circular dichroism and UV absorption spectroscopy and polyacrylamide electrophoresis, we studied consequences of lesions at different positions of the model five-repeat human telomere DNA sequences on the structure and stability of their quadruplexes in sodium and in potassium. RESULTS: The repeats affected by lesion are preferentially positioned as terminal overhangs of the core quadruplex structurally similar to the four-repeat one. Forced affecting of the inner repeats leads to presence of variety of more parallel folds in potassium. In sodium the designed models form mixture of two dominant antiparallel quadruplexes whose population varies with the position of the affected repeat. The shapes of quadruplex CD spectra, namely the height of dominant peaks, significantly correlate with melting temperatures. CONCLUSION: Lesion in one guanine tract of a more than four repeats long human telomere DNA sequence may cause re-positioning of its quadruplex arrangement associated with a shift of the structure to less common quadruplex conformations. The type of the quadruplex depends on the loop position and external conditions. GENERAL SIGNIFICANCE: The telomere DNA quadruplexes are quite resistant to the effect of point mutations due to the telomere DNA repetitive nature, although their structure and, consequently, function might be altered.
- MeSH
- blízká infračervená spektroskopie MeSH
- bodová mutace MeSH
- cirkulární dichroismus MeSH
- G-kvadruplexy účinky léků MeSH
- guanin chemie MeSH
- konformace nukleové kyseliny účinky léků MeSH
- lidé MeSH
- oxidační stres genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- sodík toxicita MeSH
- telomery chemie účinky léků genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recently, we reported an inhibitory effect of guanine substitutions on the conformational switch from antiparallel to parallel quadruplexes (G4) induced by dehydrating agents. As a possible cause, we proposed a difference in the sensitivity of parallel and antiparallel quadruplexes to the guanine substitutions in the resulting thermodynamic stability. Reports on the influence of guanine substitutions on the biophysical properties of intramolecular parallel quadruplexes are rare. Moreover, such reports are often complicated by the multimerisation tendencies of parallel quadruplexes. To address this incomplete knowledge, we employed circular dichroism spectroscopy (CD), both as stopped-flow-assisted fast kinetics measurements and end-point measurements, accompanied by thermodynamic analyses, based on UV absorption melting profiles, and electrophoretic methods. We showed that parallel quadruplexes are significantly more sensitive towards guanine substitutions than antiparallel ones. Furthermore, guanine-substituted variants, which in principle might correspond to native genomic sequences, distinctly differ in their biophysical properties, indicating that the four guanines in each tetrad of parallel quadruplexes are not equal. In addition, we were able to distinguish by CD an intramolecular G4 from intermolecular ones resulting from multimerisation mediated by terminal tetrad association, but not from intermolecular G4s formed due to inter-strand Hoogsteen hydrogen bond formation. In conclusion, our study indicates significant variability in parallel quadruplex structures, otherwise disregarded without detailed experimental analysis.
Circular dichroism (CD) is remarkably sensitive to the conformational states of nucleic acids; therefore, CD spectroscopy has been used to study most features of DNA and RNA structures. Quadruplexes are among the significant noncanonical nucleic acids architectures that have received special attentions recently. This article presents examples on the contribution of CD spectroscopy to our knowledge of quadruplex structures and their polymorphism. The examples were selected to demonstrate the potential of this simple method in the quadruplex field. As CD spectroscopy detects only the global feature of a macromolecule, it should preferably be used in combination with other techniques. On the other hand, CD spectroscopy, often as a pioneering approach, can reveal the formation of particular structural arrangements, to search for the conditions stabilizing the structures, to follow the transitions between various structural states, to explore kinetics of their appearance, to determine thermodynamic parameters and also detect formation of higher order structures. This article aims to show that CD spectroscopy is an important complementary technique to NMR spectroscopy and X-ray diffraction in quadruplex studies.
- MeSH
- cirkulární dichroismus metody MeSH
- difrakce rentgenového záření MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- guanin chemie MeSH
- kinetika MeSH
- konformace nukleové kyseliny * MeSH
- oligonukleotidy chemie MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Abasic (AP) lesions are the most frequent type of damages occurring in cellular DNA. Here we describe the conformational effects of AP sites substituted for 2'-deoxyadenosine in the first (ap7), second (ap13) or third (ap19) loop of the quadruplex formed in K(+) by the human telomere DNA 5'-d[AG3(TTAG3)3]. CD spectra and electrophoresis reveal that the presence of AP sites does not hinder the formation of intramolecular quadruplexes. NMR spectra show that the structural heterogeneity is substantially reduced in ap7 and ap19 as compared to that in the wild-type. These two (ap7 and ap19) sequences are shown to adopt the hybrid-1 and hybrid-2 quadruplex topology, respectively, with AP site located in a propeller-like loop. All three studied sequences transform easily into parallel quadruplex in dehydrating ethanol solution. Thus, the AP site in any loop region facilitates the formation of the propeller loop. Substitution of all adenines by AP sites stabilizes the parallel quadruplex even in the absence of ethanol. Whereas guanines are the major determinants of quadruplex stability, the presence or absence of loop adenines substantially influences quadruplex folding. The naturally occurring adenine-lacking sites in the human telomere DNA can change the quadruplex topology in vivo with potentially vital biological consequences.