cell-fate Dotaz Zobrazit nápovědu
BACKGROUND: Glucose homeostasis is dependent on functional pancreatic α and ß cells. The mechanisms underlying the generation and maturation of these endocrine cells remain unclear. RESULTS: We unravel the molecular mode of action of ISL1 in controlling α cell fate and the formation of functional ß cells in the pancreas. By combining transgenic mouse models, transcriptomic and epigenomic profiling, we uncover that elimination of Isl1 results in a diabetic phenotype with a complete loss of α cells, disrupted pancreatic islet architecture, downregulation of key ß-cell regulators and maturation markers of ß cells, and an enrichment in an intermediate endocrine progenitor transcriptomic profile. CONCLUSIONS: Mechanistically, apart from the altered transcriptome of pancreatic endocrine cells, Isl1 elimination results in altered silencing H3K27me3 histone modifications in the promoter regions of genes that are essential for endocrine cell differentiation. Our results thus show that ISL1 transcriptionally and epigenetically controls α cell fate competence, and ß cell maturation, suggesting that ISL1 is a critical component for generating functional α and ß cells.
- Publikační typ
- časopisecké články MeSH
During the first cell-fate decision of mouse preimplantation embryo development, a population of outer-residing polar cells is segregated from a second population of inner apolar cells to form two distinct cell lineages: the trophectoderm and the inner cell mass (ICM), respectively. Historically, two models have been proposed to explain how the initial differences between these two cell populations originate and ultimately define them as the two stated early blastocyst stage cell lineages. The 'positional' model proposes that cells acquire distinct fates based on differences in their relative position within the developing embryo, while the 'polarity' model proposes that the differences driving the lineage segregation arise as a consequence of the differential inheritance of factors, which exhibit polarized subcellular localizations, upon asymmetric cell divisions. Although these two models have traditionally been considered separately, a growing body of evidence, collected over recent years, suggests the existence of a large degree of compatibility. Accordingly, the main aim of this review is to summarize the major historical and more contemporarily identified events that define the first cell-fate decision and to place them in the context of both the originally proposed positional and polarity models, thus highlighting their functional complementarity in describing distinct aspects of the developmental programme underpinning the first cell-fate decision in mouse embryogenesis.
- MeSH
- biologické modely * MeSH
- buněčný rodokmen MeSH
- embryo savčí cytologie fyziologie MeSH
- embryonální vývoj fyziologie MeSH
- polarita buněk * MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Neural stem cells (NSCs) are defined by their dual ability to self-renew through mitotic cell division or differentiate into the varied neural cell types of the CNS. DISP3/PTCHD2 is a sterol-sensing domain-containing protein, highly expressed in neural tissues, whose expression is regulated by thyroid hormone. In the present study, we used a mouse NSC line to investigate what effect DISP3 may have on the self-renewal and/or differentiation potential of the cells. We demonstrated that NSC differentiation triggered significant reduction in DISP3 expression in the resulting astrocytes, neurons and oligodendrocytes. Moreover, when DISP3 expression was disrupted, the NSC "stemness" was suppressed, leading to a larger population of cells undergoing spontaneous neuronal differentiation. Conversely, overexpression of DISP3 resulted in increased NSC proliferation. When NSCs were cultured under differentiation conditions, we observed that the lack of DISP3 augmented the number of NSCs differentiating into each of the neural cell lineages and that neuronal morphology was altered. In contrast, DISP3 overexpression resulted in impaired cell differentiation. Taken together, our findings imply that DISP3 may help dictate the NSC cell fate to either undergo self-renewal or switch to the terminal differentiation cell program.
- MeSH
- astrocyty cytologie metabolismus MeSH
- buněčná diferenciace genetika MeSH
- buněčné linie MeSH
- buněčný cyklus genetika MeSH
- fenotyp MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- nervové kmenové buňky cytologie metabolismus MeSH
- neurony cytologie metabolismus MeSH
- oligodendroglie cytologie metabolismus MeSH
- proliferace buněk MeSH
- vývojová regulace genové exprese * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Adult stem cells are undifferentiated elements able to self-renew or differentiate to maintain tissue integrity. Within this context, stem cells are able to divide in a symmetric fashion, feature characterising all the somatic cells, or in an asymmetric way, which leads daughter cells to different fates. It is worth highlighting that cell polarity have a critical role in regulating stem cell asymmetric division and the proper control of cell division depends on different proteins involved in cell development, differentiation and maintenance of tissue homeostasis. Moreover, the interaction between cells and the extracellular matrix are crucial in influencing cell behavior, included in terms of mechanical properties as cytoskeleton plasticity and remodelling, and membrane tension. Finally, the activation of specific transcriptional program and epigenetic modifications contributes to cell fate determination, through modulation of cellular signalling cascades. It is well known that physical and mechanical stimuli are able to influence biological systems, and in this context, the effects of electromagnetic fields (EMFs) have already shown a considerable role, even though there is a lack of knowledge and much remains to be done around this topic. In this review, we summarize the historical background of EMFs applications and the main molecular mechanism involved in cellular remodelling, with particular attention to cytoskeleton elasticity and cell polarity, required for driving stem cell behavior.
The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction-which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs-would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli. The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Individual metazoan transcription factors (TFs) regulate distinct sets of genes depending on cell type and developmental or physiological context. The precise mechanisms by which regulatory information from ligands, genomic sequence elements, co-factors, and post-translational modifications are integrated by TFs remain challenging questions. Here, we examine how a single regulatory input, sumoylation, differentially modulates the activity of a conserved C. elegans nuclear hormone receptor, NHR-25, in different cell types. Through a combination of yeast two-hybrid analysis and in vitro biochemistry we identified the single C. elegans SUMO (SMO-1) as an NHR-25 interacting protein, and showed that NHR-25 is sumoylated on at least four lysines. Some of the sumoylation acceptor sites are in common with those of the NHR-25 mammalian orthologs SF-1 and LRH-1, demonstrating that sumoylation has been strongly conserved within the NR5A family. We showed that NHR-25 bound canonical SF-1 binding sequences to regulate transcription, and that NHR-25 activity was enhanced in vivo upon loss of sumoylation. Knockdown of smo-1 mimicked NHR-25 overexpression with respect to maintenance of the 3° cell fate in vulval precursor cells (VPCs) during development. Importantly, however, overexpression of unsumoylatable alleles of NHR-25 revealed that NHR-25 sumoylation is critical for maintaining 3° cell fate. Moreover, SUMO also conferred formation of a developmental time-dependent NHR-25 concentration gradient across the VPCs. That is, accumulation of GFP-tagged NHR-25 was uniform across VPCs at the beginning of development, but as cells began dividing, a smo-1-dependent NHR-25 gradient formed with highest levels in 1° fated VPCs, intermediate levels in 2° fated VPCs, and low levels in 3° fated VPCs. We conclude that sumoylation operates at multiple levels to affect NHR-25 activity in a highly coordinated spatial and temporal manner.
- MeSH
- buněčná diferenciace genetika MeSH
- Caenorhabditis elegans genetika růst a vývoj MeSH
- DNA vazebné proteiny biosyntéza genetika MeSH
- mapy interakcí proteinů MeSH
- protein SUMO-1 genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- signální transdukce genetika MeSH
- sumoylace * MeSH
- transkripční faktory biosyntéza genetika MeSH
- vulva cytologie růst a vývoj MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Asymmetric division is a property of eukaryotic cells that is fundamental to the formation of higher life forms. Despite its importance, the mechanism behind it remains elusive. Asymmetry in the cell is induced by polarization of cell fate determinants that become unevenly distributed among progeny cells. So far dozens of determinants have been identified. Xenopus laevis is an ideal system to study asymmetric cell division during early development, because of the huge size of its oocytes and early-stage blastomeres. Here, we present the current knowledge about localization and distribution of cell fate determinants along the three body axes: animal-vegetal, dorsal-ventral, and left-right. Uneven distribution of cell fate determinants during early development specifies the formation of the embryonic body plan.
DNA damage can impair normal cellular functions and result in various pathophysiological processes including cardiovascular diseases and cancer. We compared the genotoxic potential of diverse DNA damaging agents, and focused on their effects on the DNA damage response (DDR) and cell fate in human lung cells BEAS-2B. Polycyclic aromatic hydrocarbons [PAHs; benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP)] induced DNA strand breaks and oxidative damage to DNA; anticancer drugs doxorubicin (DOX) and 5-bromo-2'-deoxyuridine (BrdU) were less effective. DOX triggered the most robust p53 signaling indicating activation of DDR, followed by cell cycle arrest in the G2/M phase, induction of apoptosis and senescence, possibly due to the severe and irreparable DNA lesions. BrdU not only activated p53, but also increased the percentage of G1-phased cells and caused a massive accumulation of senescent cells. In contrast, regardless the activation of p53, both PAHs did not substantially affect the cell cycle distribution or senescence. Finally, a small fraction of cells accumulated only in the G2/M phase and exhibited increased cell death after the prolonged incubation with B[a]P. Overall, we characterized differential responses to diverse DNA damaging agents resulting in specific cell fate and highlighted the key role of DNA lesion type and the p53 signaling persistence.
Plant vascular meristems are sets of pluripotent cells that enable radial growth by giving rise to vascular tissues and are therefore crucial to plant development. However, the overall dynamics of cellular determination and patterning in and around vascular meristems is still unexplored. We study this process in the shoot vascular tissue of Arabidopsis thaliana, which is organized in vascular bundles that contain three basic cell types (procambium, xylem and phloem). A set of molecules involved in this process has now been identified and partially characterized, but it is not yet clear how the regulatory interactions among them, in conjunction with cellular communication processes, give rise to the steady patterns that accompany cell-fate determination and arrangement within vascular bundles. We put forward a dynamic model factoring in the interactions between molecules (genes, peptides, mRNA and hormones) that have been reported to be central in this process, as well as the relevant communication mechanisms. When a few proposed interactions (unverified, but based on related data) are postulated, the model reproduces the hormonal and molecular patterns expected for the three regions within vascular bundles. In order to test the model, we simulated mutant and hormone-depleted systems and compared the results with experimentally reported phenotypes. The proposed model provides a formal framework integrating a set of growing experimental data and renders a dynamic account of how the collective action of hormones, genes, and other molecules may result in the specification of the three main cell types within shoot vascular bundles. It also offers a tool to test the necessity and sufficiency of particular interactions and conditions for vascular patterning and yields novel predictions that may be experimentally tested. Finally, this model provides a reference for further studies comparing the overall dynamics of tissue organization and formation by meristems in other plant organs and species.
- MeSH
- algoritmy MeSH
- Arabidopsis cytologie genetika metabolismus MeSH
- biologické modely MeSH
- buněčná diferenciace MeSH
- cévní svazky rostlin cytologie genetika metabolismus MeSH
- cytokininy fyziologie MeSH
- genové regulační sítě MeSH
- meristém cytologie genetika metabolismus MeSH
- počítačová simulace MeSH
- proteinkinasy fyziologie MeSH
- proteiny huseníčku fyziologie MeSH
- regulace genové exprese u rostlin MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.