BACKGROUND: In today's digital age, demanding to interpret vast quantities of visual information with speed and accuracy, nonverbal Intelligence has become increasingly crucial for children, as it plays a key role in cognitive development and learning. While motor proficiency has been positively linked to various cognitive functions in children, its relationship with nonverbal Intelligence remains an open question. This study, therefore, explored the structural associations between motor proficiency and nonverbal Intelligence in school-aged children (6 to 11 years), focusing on potential age and sex-specific patterns. METHODS: Data were obtained from 396 children aged 6 to 11 (214 boys, 182 girls; mean age 8.9 years ±1.3) divided into younger children 6-8 years and older Children 9-11 years. Motor proficiency was assessed using the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (BOT-2), and non-verbal Intelligence was evaluated with the Raven Progressive Matrices (RPM). We conducted multigroup structural modelling with non-verbal Intelligence as a dependent latent variable. RESULTS: The BOT-2 and RPM models demonstrated an acceptable fit in Czech children. Strength-agility and Fine motor control emerged as the strongest predictors of nonverbal intelligence level assessed by five sets of RPM. Age-specific analyses revealed that the Strength-agility construct was consistently a significant predictor of nonverbal intelligence level in both age categories. However, in older children, also Fine motor control was significantly linked to nonverbal intelligence level. Sex-specific differences were also observed in the structural modelling results, indicating significant predictor non-invariance based on participants' sex. In girls, both Fine motor control and the Strength-agility constructs were significant predictors of nonverbal Intelligence level, showing stronger associations with nonverbal Intelligence than boys. For boys, only the Strength-agility construct was a significant predictor of RPM performance. CONCLUSION: This study reveals a nuanced age- and sex-specific relationship between children's motor proficiency and nonverbal Intelligence. The findings underscore the need for targeted physical interventions, particularly those emphasising fine motor and strength-agility exercises, to ensure equitable opportunities for motor skill development. Such interventions may enhance physical abilities and support cognitive development in an increasingly digital world.
- MeSH
- analýza latentních tříd MeSH
- dítě MeSH
- inteligence * fyziologie MeSH
- lidé MeSH
- motorické dovednosti * fyziologie MeSH
- sexuální faktory MeSH
- věkové faktory MeSH
- vývoj dítěte fyziologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Ice hockey requires two levels of specific agility, involving different abilities, where the level of agility and their constraints might vary by the performance level. Therefore, this study aimed to compare the relationship level between on-ice and off-ice change of directional speed (COD) of youth hockey players at two performance levels. The study was conducted during the hockey season, including U16 elite players (n = 40) and U16 sub-elite players (n = 23). Both groups performed specific on-ice fitness tests (4-m acceleration, 30-m sprint, and 6 x 54-m tests, an on-ice Illinois agility test with and without a puck) and off-ice tests consisting of non-arm swing countermovement jumps (CMJs), broad jumps, and pull-ups. Pearson correlation showed that the acceleration performance of elite players was related to the CMJ (r = -0.46) and the broad jump (r = -0.31). Sub-elite players showed stronger dependence of the 30-m sprint on the CMJ (r = -0.77) and the broad jump (r = -0.43), the relation of pulls ups (r = -0.62) and the CMJ (r = -0.50) to the 6 x 54-m test, yet no association to acceleration. Elite players differ between off-ice and on-ice performance constraints, where their skating sprint is less related to their vertical and horizontal take-off abilities than in sub-elite players. Sub-elite players' off-ice power determines their sprint and repeated sprint performance. COD performance of elite and sub-elite players is based on different conditioning constraints.
- Publikační typ
- časopisecké články MeSH
The Developmental Coordination Disorder Questionnaire (DCDQ) is a widely used parent questionnaire for screening motor coordination disorders in children aged 5-15 years. Despite increasing motor difficulties in children, a validated version is lacking in Central Europe. In addition, previous studies pointed out that several DCDQ items were shown to be problematic in different cultural environments. We found that the majority of these studies did not assess the item's content validity approach for keeping the semantic form and linguistic intelligibility of the original items. Therefore, this study aimed to translate the DCDQ, determine the content validity of items, and adapt the DCDQ for Czech children aged 6-10 years, where the identification of motor difficulties is crucial. Back-translation was employed, and face validity was consulted with linguistic experts and occupational therapists. A sample of 25 bilingual parents and practitioners evaluated the translated version, with content validity assessed using the Content Validity Ratio coefficient (CVR). Initial CVR scores ranged from 0.6 to 1.0. Lower scores were found for items 14 and 15, which were shown to be problematic in previous studies. The reason for the lower content validity in these items was due to double negation. Following linguistic modifications, the CVR values improved (range: 0.87-1.0), indicating content and semantic stability. Our findings underscore the importance of considering content validity and language specificity, including issues like double negation, during cross-cultural questionnaire validation to mitigate potential psychometric concerns in the future. The adapted Czech version exhibits significant content validity, thereby warranting further validation of its psychometric properties.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Existing research underscores the positive influence of consistent physical activity, fitness, and motor coordination on school-aged children's cognitive and academic performance. However, a gap exists in fully understanding this relationship among preschoolers, a critical age group where the development of cognitive functions is significant. The study aims to expand upon existing evidence that connects motor and cognitive development by examining the correlation between specific motor coordination and physical fitness skills and the development of constructive and conceptual thinking in preschool-aged children. METHODS: Data from 56 children aged 4-5 years (mean age 4.5 ± 0.36y), comprising 30 girls and 26 boys, participated in this study. We assessed muscular strength (via standing long jump, wall toss test, flexibility), agility (4 × 5 m shuttle), cardiorespiratory fitness (20 m pacer test), and motor coordination (lateral jumping, platform shifting). Cognitive abilities were measured using the IDS-P. RESULTS: Linear regression models showed that significant predictors of constructive thinking scores were observed solely for flexibility (p = 0.02) and shifting platforms (p = 0.01). Notably, flexibility exhibited a negative relationship (β = -1.68). In the context of conceptual thinking, significant predictors (p < 0.05) included standing long jump (p = 0.01), jumping laterally (p = 0.005), shifting platforms (p = 0.001), throwing (p = 0.02). CONCLUSION: Coordination-demanding activities seem to be related considerably to conceptual thinking in preschoolers. Integrating such motor activities into preschool curricula that demand cognitive engagement can positively influence the development of cognitive functions.
- Publikační typ
- časopisecké články MeSH
Research on the external physical load on elite youth soccer players during the weekly training microcycle in competitive periods and official matches is limited. The aims of this study were twofold: a) investigate possible differences in external physical load (PL) across player positions in U17 elite youth soccer players during official matches; b) determine the weekly training to match physical load ratio (WTMLr) across player positions. The sample included 20 outfield players from an elite soccer academy (mean age 15.94 ± 0.25 years) playing in four positions: central defender (CD), full-back (FB), central midfielder (CM) and Striker (S). Data were collected during the spring in-season period for 17 official matches played in a 4-3-3 game format. Indicators of external physical load monitored were: total distance (TD); total distance in high-speed running (HSR; > 16.1 km.h-1); total distance in sprint running (SPR; > 21.6 km.h-1); and relative physical load intensity (%HSR). The WTMLr was calculated for TD, HSR, SPR and %HSR as the ratio of the average weekly sum of training PL to the average sum of PL in an official match for a given players' position. Collectively, the training intensity during a one-week microcycle (%HSR in WTMLr) achieved only 76 % of match demands. CD performed significantly lower in all measured indicators of external PL during the official match than all other positions (p < 0.05; g > 0.80) except for TD in S. S achieved significantly higher SPR during official matches compared to CD (p < 0.05; g > 0.80), CM, and FB (g > 0.80). In contrast, CD reported higher WTMLr (medium-large effect size) in HSR and SPR indicators than all other positions. CM performed significantly higher %HSR in WTMLr than S and FB (p < 0.05; g > 0.80). Results revealed insufficient training intensity relative to match demands and, at the same time, weekly training PL did not meet match demands (especially in HSR and SPR) for players across the different positions. Therefore, practitioners should select appropriate training methods (drills and games) to ensure sufficient training intensity (HSR and SR metrics) and consider using the WTMLr, which can be used to help optimise and individualise training PL for different player positions.
The Developmental Coordination Disorder Questionnaire (DCDQ) is widely used as a brief parent questionnaire designed to screen for motor coordination in children, aged 5 to 15 years. There is no validated version of the DCDQ for the Central Europe, which could help for first catch of children with motor difficulties, whose amount has been seriously raised. In addition, the World Health Organization recommends the cross-cultural validation of existing instruments, for Loir costs and time consuming, and the availability of instruments in several languages enables therapists to use validated tools with non-English speaking clients. The aim of this study was to validate the DCDQ in the Czech culture in a population of Czech parents whose children were aged six to ten. Using data from 651 Czech parents of children (six to ten years; 7.8 ± 0.8 years), confirmatory factor analyses (CFA) were used. The goodness-of-fit indices CFI = 0.94, TLI = 0.93, and RMSEA = 0.08 supported the original three-factor model of the DCDQ. In addition, the factor loadings of each question discovered in Czech DCDQ were non-significantly different from the original DCDQ. Furthermore, we also found strong between factor correlation; general coordination and control movement r = 0.87 probably measure the same underlying construct. Even though this is in conformity with original DCDQ structure, we suggest that responses in these two DCDQ factors might have violated the local independency and, therefore, could bias the final score. The generic reliability of the individual factors was acceptable and ranged from McDonald ω 0.83-0.88. Results from this study suggest that cross-validated version of the original DCDQ can be considered as sufficiently valid and reliable clinical screening tool for children who have coordination challenges for Czech children aged six to ten.
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Acute lymphoblastic leukaemia (ALL) ranks among paediatrics' most common oncological malignancies. Monitoring motor performance levels associated with self-sufficiency in the everyday activities of ALL patients is extremely important during treatment. The motor development of children and adolescents with ALL is most often assessed using the Bruininks-Oseretsky Test of Motor Proficiency Second Edition (BOT-2) complete form (CF) with 53 items or the short form (SF) with 14 items. However, there is no evidence in research that BOT-2 CF and SF give comparable results in the population of patients with ALL. OBJECTIVE: This study aimed to determine the compatibility of motor proficiency levels achieved from BOT-2 SF and BOT-2 CF in ALL survivors. MATERIALS AND METHOD: The research sample consists of n = 37 participants (18 girls, 19 boys) aged 4-21 years (10.26, ± SD 3.9) after treatment for ALL. All participants passed BOT-2 CF and were at least 6 months and a maximum of 6 years from the last dose of vincristine (VCR). We used ANOVA with repeated measures, considering the sex, intra-class correlation (ICC) for uniformity between BOT-2 SF and BOT-2 CF scores and Receiving Operating Characteristic. RESULTS: BOT-2 SF and BOT-2 CF assess the same underlying construct, and BOT-2 SF and CF standard scores have good uniformity: ICC = 0.78 for boys and ICC = 0.76 for girls. However, results from ANOVA showed that the participants achieved a significantly lower standard score in SF (45.1 ± 7.9) compared to CF (49.1 ± 9.4) (p < 0.001; Hays ω2 = 0.41). ALL patients performed the worst in Strength and Agility. According to the ROC analysis, BOT-2 SF obtains acceptable sensitivity (72.3%) and high specificity (91.9%) with high accuracy of 86.1%, and the fair value of the Area Under the Curve (AUC) = 0.734 CI95% (0.47-0.88) in comparison to BOT-2 CF. CONCLUSIONS: To reduce the burden on ALL patients and their families, we recommend using BOT-2 SF instead of BOT-2 CF as a useful screening tool. BOT-SF can replicate motor proficiency with as high probability as BOT-2 CF but systematically underestimates motor proficiency.
- Publikační typ
- časopisecké články MeSH
Ice-hockey requires high acceleration and speed sprint abilities, but it is unclear what the distance characteristic is for measuring these capabilities. Therefore, this systematic meta-analysis aims to summarize the sprint reference values for different sprint distances and suggest the appropriate use of ice-hockey straight sprint testing protocols. A total of 60 studies with a pooled sample of 2254 males and 398 females aged 11-37 years were included. However, the pooled data for women was not large enough to permit statistical analysis. The sprint distance used for measuring the reported acceleration and speed was between 4-48 m. Increased test distance was positively associated with increased speed (r = 0.70) and negatively with average acceleration (r = -0.87). Forward skating sprint speed increases with the measured distance up to 26 m and do not differ much from longer distance tests, while acceleration decreases with a drop below 3 m/s at distances 15 m and longer. The highest acceleration (5.89 m/s2 peak, 3.31 m/s2 average) was achieved in the shortest distances up to 7 m which significantly differs from 8-14 m tests. The highest speed (8.1 m/s peak, 6.76 m/s average) has been recorded between 26-39 m; therefore, distances over 39 m are not necessary to achieve maximum speed. Considering match demands and most reported test distances, 6.1 m is the recommended distance for peak acceleration and 30 m for peak speed. The sprint time, acceleration, and speed of each individual and the number of skating strides should be reported in future studies.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Previous empirical research and reviews have suggested that the level of fundamental movement skills (FMS), motor competence (MC), physical activity (PA), or physical fitness seem to directly influence the executive functions (EFs) in school aged children. However, there is no available comprehensive review of whether the exact links between motor constructs and EFs also exist in the preschool period, even though preschool age is the critical period for developing EFs. Therefore, this study aimed to systematically review the evidence on the association between FMS, MC, PA, PF, and EFs. To conduct the systematic review, we utilized searches using Web of Science, PubMed, and EBSCO (including SPORTDiscus and Academic Search Premier). We included studies that examined associations between one or all of the four motor constructs with EFs among typically developing children aged 3-6 years, published between January 2010 and October 2021. A total of 15 studies met the inclusion criteria, of which four were randomized controlled trials, three were longitudinal studies, four were cohort studies, and four were cross-sectional studies. We found weak correlations or insufficient evidence for associations between FMS, PA, PF, and EFs. However, there was strong evidence for a moderately strong association between MC and working memory, a moderately weak association between MC and inhibition, and inadequate evidence for a weak to moderate association between MC and shifting. In addition, only half of the included studies were methodologically high-quality studies. Specifically, a questionable design selection of research samples might bias the strength of evaluated associations. We also found significant diversity in the diagnostic tools used for assessing and measuring motor and EFs domains. Our findings support the assumption that motor competencies level, which contains physical capacity and cognitive components, could be significantly linked to EF development from a preschool age. Therefore, we suggest that future studies focus more on clinical trial design, combining movement interventions with different levels of cognitive components, for the purposive development of EFs in preschool-aged children.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The factors that influence the on-ice change of directional speed (COD) of ice hockey players remain unclear. Therefore, this study aimed to determine which off-ice and anthropometric variables determine hockey COD with and without a puck. Thirty-two elite ice hockey players (age: 17.64 ± 1.02 years, body height: 180 ± 7.5 cm, body mass: 76.4 ± 7.8 kg) performed squat jumps, broad jumps, countermovement jumps, and pull-ups and were assessed on agility office and on-ice, with and without a puck. Anthropometric characteristics were determined according to the modified somatotype method. A moderate correlation (r = 0.59-0.6) was observed among all agility tests, between on-ice agility with a puck and lower limb skeletal robustness (r = 0.45), and between on-ice agility with a puck and sit-and-reach scores (r = -0.50). Agility without a puck correlated with squat jump height (r = -0.36). Multiple regression analysis indicated that off-ice agility (β = 0.51) and skeletal robustness of the lower limbs (β = 0.35) determined (R2 = 0.41) on-ice agility with a puck. Players' COD was assessed by Illinois tests of agility off-ice and on-ice, with and without a puck; each of these tests moderately predicted the others, but differed in their physical constraints. Players with higher skeletal robustness used more strength and power to achieve COD performance, while players with lower skeletal robustness used techniques and skills to achieve COD, resulting in superior COD performance with a puck compared to stronger athletes. CODs with and without a puck are discrete skills requiring different abilities.
- Publikační typ
- časopisecké články MeSH