Oxidative stress has been implied in cellular injury even in the early phases of multiple sclerosis (MS). In this study, we quantified levels of biomarkers of oxidative stress and antioxidant capacity in cerebrospinal fluid (CSF) in newly diagnosed MS patients and their associations with brain atrophy and iron deposits in the brain tissue. Consecutive treatment-naive adult MS patients (n = 103) underwent brain MRI and CSF sampling. Healthy controls (HC, n = 99) had brain MRI. CSF controls (n = 45) consisted of patients with non-neuroinflammatory conditions. 3T MR included isotropic T1 weighted (MPRAGE) and gradient echo (GRE) images that were processed to quantitative susceptibility maps. The volume and magnetic susceptibility of deep gray matter (DGM) structures were calculated. The levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-iso prostaglandin F2α (8-isoPG), neutrophil gelatinase-associated lipocalin (NGAL), peroxiredoxin-2 (PRDX2), and malondialdehyde and hydroxyalkenals (MDA + HAE) were measured in CSF. Compared to controls, MS patients had lower volumes of thalamus, pulvinar, and putamen, higher susceptibility in caudate nucleus and globus pallidus, and higher levels of 8-OHdG, PRDX2, and MDA + HAE. In MS patients, the level of NGAL correlated negatively with volume and susceptibility in the dentate nucleus. The level of 8-OHdG correlated negatively with susceptibility in the caudate, putamen, and the red nucleus. The level of PRDX2 correlated negatively with the volume of the thalamus and both with volume and susceptibility of the dentate nucleus. From MRI parameters with significant differences between MS and HC groups, only caudate susceptibility and thalamic volume were significantly associated with CSF parameters. Our study shows that increased oxidative stress in CSF detected in newly diagnosed MS patients suggests its role in the pathogenesis of MS.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: There is a lack of knowledge about the evolution of cerebrospinal fluid (CSF) markers in multiple sclerosis (MS) patients undergoing natalizumab treatment. AIM: We aimed to evaluate the effect of natalizumab on basic inflammatory CSF and MRI measures. METHODS: Together, 411 patients were screened for eligibility and 93 subjects with ≥2 CSF examinations ≤6 months before and ≥12 months after natalizumab initiation were recruited. The effect of natalizumab on CSF as well as clinical and paraclinical measures was analyzed using adjusted mixed models. RESULTS: Natalizumab induced a decrease in CSF leukocytes (p < 1 × 10-15), CSF protein (p = 0.00007), the albumin quotient (p = 0.007), the IgG quotient (p = 6 × 10-15), the IgM quotient (p = 0.0002), the IgG index (p = 0.0004), the IgM index (p = 0.003) and the number of CSF-restricted oligoclonal bands (OCBs) (p = 0.0005). CSF-restricted OCBs positivity dropped from 94.6% to 86% but 26 patients (28%) had an increased number of OCBs at the follow-up. The baseline to follow-up EDSS and T2-LV were stable; a decrease in the relapse rate was consistent with a decrease in the CSF inflammatory markers and previous knowledge about the effectiveness of natalizumab. The average annualized brain volume loss during the follow-up was -0.50% (IQR = -0.96, -0.16) and was predicted by the baseline IgM index (B = -0.37; p = 0.003). CONCLUSIONS: Natalizumab is associated with a reduction of basic CSF inflammatory measures supporting its strong anti-inflammatory properties. The IgM index at the baseline predicted future brain volume loss during the course of natalizumab treatment.
- Publikační typ
- časopisecké články MeSH
(1) Background: Cognitive deterioration is an important marker of disease activity in multiple sclerosis (MS). It is vital to detect cognitive decline as soon as possible. Cognitive deterioration can take the form of isolated cognitive decline (ICD) with no other clinical signs of disease progression present. (2) Methods: We investigated 1091 MS patients from the longitudinal GQ (Grant Quantitative) study, assessing their radiological, neurological, and neuropsychological data. Additionally, the confirmatory analysis was conducted. Clinical disease activity was defined as the presence of new relapse or disability worsening. MRI activity was defined as the presence of new or enlarged T2 lesions on brain MRI. (3) Results: Overall, 6.4% of patients experienced cognitive decline and 4.0% experienced ICD without corresponding clinical activity. The vast majority of cognitively worsening patients showed concomitant progression in other neurological and radiologic measures. There were no differences in disease severity between completely stable patients and cognitively worsening patients but with normal cognition at baseline. (4) Conclusions: Only a small proportion of MS patients experience ICD over short-term follow-up. Patients with severe MS are more prone to cognitive decline; however, patients with normal cognitive performance and mild MS might benefit from the early detection of cognitive decline the most.
- Publikační typ
- časopisecké články MeSH