This study presents a combined experimental and numerical investigation of fiber transport and deposition in a realistic model of the female respiratory tract, extending to the seventh generation of branching. Numerical simulations were performed using the Euler-Lagrange Euler-Rotation (ELER) method, an efficient alternative to conventional Finite Volume Methods that benefits from explicit formulation and vast scalability, enabling fast parallelization on high-performance clusters. The ELER method was coupled with the Lattice Boltzmann Method (LBM) to simulate fiber dynamics under a realistic inspiratory flow profile. Experimental validation was conducted using an identical physical airway replica. The results demonstrated good agreement between simulations and experiments in the upper airways and trachea, with some discrepancies in the bifurcations, likely owing to the challenges of modeling complex turbulent flow with ELER. This method is more accurate than corresponding effective diameter simulations. Deposition patterns were analyzed as a function of fiber dimensions, revealing higher accuracy of the ELER method for smaller particles and confirming the tendency of higher aspect ratio fibers to penetrate deeper into the lungs. The orientation-dependent deposition mechanism was deployed, underscoring the importance of solving the actual orientations of the fibers. While advancing our understanding of fiber transport in female airways, the findings also reveal limitations in current numerical techniques, particularly in bifurcations. This study emphasizes the distinct behavior of fibrous versus spherical particles, with fibers exhibiting a greater propensity to reach deeper lung regions, which has significant implications for inhalation toxicology and drug delivery.
- Klíčová slova
- Deposition, Euler–Lagrange Euler-rotation, Female airway geometry, Fiber transport, In silico, In vitro, Lattice Boltzmann method,
- MeSH
- aplikace inhalační MeSH
- biologické modely * MeSH
- dýchací soustava * MeSH
- lidé MeSH
- plíce MeSH
- počítačová simulace MeSH
- trachea * fyziologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The numerical simulation of inhaled aerosols in medical research starts to play a crucial role in understanding local deposition within the respiratory tract, a feat often unattainable experimentally. Research on children is particularly challenging due to the limited availability of in vivo data and the inherent morphological intricacies. CFD solvers based on Finite Volume Methods (FVM) have been widely employed to solve the flow field in such studies. Recently, Lattice Boltzmann Methods (LBM), a mesoscopic approach, have gained prominence, especially for their scalability on High-Performance Computers. This study endeavours to compare the effectiveness of LBM and FVM in simulating particulate flows within a child's respiratory tract, supporting research related to particle deposition and medication delivery using LBM. Considering a 5-year-old child's airway model at a steady inspiratory flow, the results are compared with in vitro experiments. Notably, both LBM and FVM exhibit favourable agreement with experimental data for the mean velocity field and the turbulence intensity. For particle deposition, both numerical methods yield comparable results, aligning well with in vitro experiments across a particle size range of 0.1-20 µm. Discrepancies are identified in the upper airways and trachea, indicating a lower deposition fraction than in the experiment. Nonetheless, both LBM and FVM offer invaluable insights into particle behaviour for different sizes, which are not easily achievable experimentally. In terms of practical implications, the findings of this study hold significance for respiratory medicine and drug delivery systems - potential health impacts, targeted drug delivery strategies or optimisation of respiratory therapies.
- Klíčová slova
- Child airways, Finite Volume Method, In vitro measurement, Lattice Boltzmann Method, Particle deposition,
- MeSH
- aerosoly MeSH
- hydrodynamika * MeSH
- lidé MeSH
- počítačová simulace MeSH
- předškolní dítě MeSH
- trachea * anatomie a histologie MeSH
- velikost částic MeSH
- Check Tag
- lidé MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aerosoly MeSH