Plant specialized metabolites play key roles in diverse physiological processes and ecological interactions. Identifying structurally novel metabolites, as well as discovering known compounds in new species, is often crucial for answering broader biological questions. The Piper genus (Piperaceae family) is known for its special phytochemistry and has been extensively studied over the past decades. Here, we investigated the alkaloid diversity of Piper fimbriulatum, a myrmecophytic plant native to Central America, using a metabolomics workflow that combines untargeted LC-MS/MS analysis with a range of recently developed computational tools. Specifically, we leverage open MS/MS spectral libraries and metabolomics data repositories for metabolite annotation, guiding isolation efforts toward structurally new compounds (i.e., dereplication). As a result, we identified several alkaloids belonging to five different classes and isolated one novel seco-benzylisoquinoline alkaloid featuring a linear quaternary amine moiety which we named fimbriulatumine. Notably, many of the identified compounds were never reported in Piperaceae plants. Our findings expand the known alkaloid diversity of this family and demonstrate the value of revisiting well-studied plant families using state-of-the-art computational metabolomics workflows to uncover previously overlooked chemodiversity. To contextualize our findings within a broader biological context, we employed a workflow for automated mining of literature reports of the identified alkaloid scaffolds and mapped the results onto the angiosperm tree of life. By doing so, we highlight the remarkable alkaloid diversity within the Piper genus and provide a framework for generating hypotheses on the biosynthetic evolution of these specialized metabolites. Many of the computational tools and data resources used in this study remain underutilized within the plant science community. This manuscript demonstrates their potential through a practical application and aims to promote broader accessibility to untargeted metabolomics approaches.
- Klíčová slova
- Piper fimbriulatum, Piperaceae, Wikidata, alkaloids, angiosperms, computational metabolomics, mass spectrometry, technical advance,
- MeSH
- alkaloidy * metabolismus MeSH
- chromatografie kapalinová MeSH
- metabolomika * MeSH
- myrmekofyty MeSH
- Piper * metabolismus chemie genetika MeSH
- tandemová hmotnostní spektrometrie * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy * MeSH
BACKGROUND: Vanilla planifolia is the most widely cultivated species of vanilla with high economic importance. However, seed germination under artificial conditions is difficult and yields low germination percentages. The seeds are adapted to endozoochorous dispersal, and we therefore tried to simulate the conditions in the digestive tract by acid scarification of seeds. RESULTS: Immature seeds lacking dormancy, used as a control, showed the highest germination percentage. Among the treatments tested for mature seeds, the hydrochloric acid treatments were significantly the best in breaking dormancy and inducing germination, irrespective of the acid concentration and the presence of pepsin. Conventional treatment with a hypochlorite solution induced much lower germination percentage. Sulphuric acid at concentration 50% was too strong and caused damage to the seeds. Important factor is also high cultivation temperature 30 °C as there was nearly no germination at 25 °C. CONCLUSIONS: Our protocol significantly improves the efficiency of generative propagation of vanilla and allows for significantly higher germination percentages than previously described. The strongly positive effect of hydrochloric acid may be related to the adaptation of seeds to endozoochorous dispersal.
- Klíčová slova
- Acid scarification, Calcium hypochlorite, HCl, Hydrochloric acid, In vitro cultivation, Orchid, Seed germination, Sulfuric acid, Vanilla planifolia,
- Publikační typ
- časopisecké články MeSH