BACKGROUND: Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS: Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS: This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.
- Klíčová slova
- Barley (Hordeum vulgare L.), Crown roots, Emergence, Transcriptome,
- MeSH
- ječmen (rod) * genetika růst a vývoj metabolismus MeSH
- kořeny rostlin * růst a vývoj genetika metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné geny MeSH
- semenáček růst a vývoj genetika MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box. Using rice protoplast transient transactivation assays and a set of previously identified CRL1-regulated genes, we confirm that CRL1 transactivates these genes if they possess at least a CRL1-box or an LBD-box in their promoters. In planta, ChIP-qPCR experiments targeting two of these genes that include both a CRL1- and an LBD-box in their promoter show that CRL1 binds preferentially to the LBD-box in these promoter contexts. CRISPR/Cas9-targeted mutation of these two CRL1-regulated genes, which encode a plant Rho GTPase (OsROP) and a basic helix-loop-helix transcription factor (OsbHLH044), show that both promote crown root development. Finally, we show that OsbHLH044 represses a regulatory module, uncovering how CRL1 regulates specific processes during crown root formation.
- Klíčová slova
- Oryza sativa, ASL/LBD transcription factor, CRL1, DNA binding domain, crown root, development, gene regulatory network, rice,
- MeSH
- DNA metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- regulace genové exprese u rostlin genetika MeSH
- rostlinné proteiny genetika metabolismus MeSH
- rýže (rod) * metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- rostlinné proteiny MeSH
- transkripční faktory MeSH