Despite numerous studies, the role of hormones in the induction of shoot apical meristem leading to reproductive development, especially regarding thermoperiodic plants, is still not fully understood. The key problem is separating the effects of the low temperature required for vernalization from those responsible for low temperature stress. An earlier experiment demonstrated the correlation between an increase of cytokinin level in the apical parts of winter rapeseed and the transition time into their reproductive phase during vernalization, i.e., low temperature treatment. From data obtained from the presented experiments, this study aims to contribute to the understanding the role of cytokinins in the induction of flowering based on the grafting of vegetative apical parts of winter rapeseed (scion) on the reproductive (stock) winter and spring genotypes. On the basis of analyses carried out using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry in combination with microscopic observation of changes at the apical meristem, it was indicated that the increase in the amount of trans-zeatin and trans- and cis-zeatin-O-glucoside derivatives appeared in the early stages of apex floral differentiation. During further development, the content of all investigated cytokinins passed through the maximum level followed by their decrease. The final level in reproductive apices was found to be higher than that in vegetative ones.
- Klíčová slova
- Brassica napus, cytokinins, grafting, reproductive development, shoot apical meristem,
- Publikační typ
- časopisecké články MeSH
The putative role of cytokinins in processes leading to reproductive development of plants was investigated by analysing the shoot apical parts of a winter cultivar of oilseed rape (Brassica napus L. var. oleifera, cv. Górczański). The endogenous cytokinin levels were measured by liquid chromatography-tandem mass spectrometry (LC-MS) in the shoot apices of vegetative plants (grown at 20/17°C with a 16/8h day/night regime) and vernalized plants (56 days at 5/2°C with a 16/8h photoperiod) at different times during floral transition. During vernalization, the content of all isoprenoid cytokinins increased significantly, coinciding well with the onset of the early stages of reproductive development. Cytokinin levels reached their maxima when most of the plants became irreversibly reproductive (after 42 days of cold treatment). cis-Zeatin riboside (unequivocally identified by quadrupole-time-of-flight MS) accounted for ca. 87-89% of the total isoprenoid cytokinin content in control and vernalized plants, whilst N(6)-isopentenyladenosine ( approximately 6% in control and approximately 8% in vernalized plants) and cis-zeatin (approxiamtely 2% in control and approximately 1% in vernalized plants) were the next most abundant cytokinins. In the post-vernalization period, endogenous cytokinin levels decreased, but remained significantly higher in the reproductive plants than in the vegetative controls. These results suggest that cytokinins, especially those of the cis-zeatin type, are involved in vernalization-induced reproductive development of B. napus.
- MeSH
- Brassica napus klasifikace růst a vývoj metabolismus MeSH
- chromatografie kapalinová MeSH
- cytokininy metabolismus MeSH
- druhová specificita MeSH
- isopentenyladenosin analogy a deriváty metabolismus MeSH
- květy růst a vývoj metabolismus MeSH
- meristém metabolismus MeSH
- nízká teplota * MeSH
- roční období MeSH
- rozmnožování fyziologie MeSH
- tandemová hmotnostní spektrometrie MeSH
- zeatin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- isopentenyladenosin MeSH
- zeatin MeSH