We studied the temperature dependence of chlorophyll fluorescence intensity in barley leaves under weak and actinic light excitation during linear heating from room temperature to 50 degrees C. The heat-induced fluorescence rise usually appearing at around 40-50 degrees C under weak light excitation was also found in leaves treated with 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or hydroxylamine (NH(2)OH). However, simultaneous treatment with both these compounds caused a disappearance of the fluorescence rise. We have suggested that the mechanism of the heat-induced fluorescence rise in DCMU-treated leaves is different than that in untreated or NH(2)OH-treated leaves. In DCMU-treated leaves, the heat-induced fluorescence rise reflects an accumulation of Q(A) (-) even under weak light excitation due to the thermal inhibition of the S(2)Q(A) (-) recombination as was further documented by a decrease in the intensity of the thermoluminescence Q band. Mathematical model simulating this experimental data also supports our interpretation. In the case of DCMU-untreated leaves, our model simulations suggest that the heat-induced fluorescence rise is caused by both the light-induced reduction of Q(A) and enhanced back electron transfer from Q(B) to Q(A). The simulations also revealed the importance of other processes occurring during the heat-induced fluorescence rise, which are discussed with respect to experimental data.
- Publikační typ
- časopisecké články MeSH
Changes in the chloroplast ultra-structure and photochemical function were studied in detached barley (Hordeum vulgare L. cv. Akcent) leaf segments senescing in darkness or in continuous white light of moderate intensity (90 mumol m-2 s-1) for 5 days. A rate of senescence-induced chlorophyll degradation was similar in the dark- and light-senescing segments. The Chl a/b ratio was almost unchanged in the dark-senescing segments, whereas in the light-senescing segments an increase in this ratio was observed indicating a preferential degradation of light-harvesting complexes of photosystem II. A higher level of thylakoid disorganisation (especially of granal membranes) and a very high lipid peroxidation were observed in the light-senescing segments. In spite of these findings, both the maximal and actual photochemical quantum yields of the photosystem II were highly maintained in comparison with the dark-senescing segments.
- MeSH
- chlorofyl a MeSH
- chlorofyl metabolismus MeSH
- chloroplasty metabolismus ultrastruktura MeSH
- elektronová mikroskopie MeSH
- fotosystém II - proteinový komplex metabolismus účinky záření MeSH
- ječmen (rod) metabolismus účinky záření ultrastruktura MeSH
- listy rostlin metabolismus účinky záření ultrastruktura MeSH
- peroxidace lipidů MeSH
- světlo MeSH
- tma MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- chlorophyll b MeSH Prohlížeč
- fotosystém II - proteinový komplex MeSH
Abstract- An unconventional band in the thermoluminescence glow curve of barley leaves at about +50°C was examined. In contrast to bands usually observed around +50°C, this band (designated as CL) is not related to photosynthetic electron transport in photosystem II. The appearance of the CL band (1) requires previous freezing of the sample, (2) is not influenced by light excitation and (3) depends on the presence of oxygen. In pure oxygen the glow curves for both leaves and chloroplast suspension exhibit three maxima at about +40°C, +65°C and +90°C. Based on the emission spectra of the CL band and measurements with etiolated leaves, we suppose that the majority of emission corresponding to the CL band originates from chlorophyll. A lipoxygenase inhibitor, butylated hydroxytoluene, and sodium azide decrease the intensity of the CL band. We propose that the mechanism leading to emission of the CL band involves thermally stimulated production of an active oxygen species that results in lipid peroxidation.
- Publikační typ
- časopisecké články MeSH