BACKGROUND: Despite long-term research on dirofilariosis in Slovakia, little attention has thus far been paid to Dirofilaria vectors. The particular aim of the present study was molecular screening for filarioid parasites in two different habitats of Bratislava, the capital city of Slovakia. In addition, the effect of urbanisation on mosquito species abundance and composition, associated with the risk of mosquito-borne infections, was studied and discussed. METHODS: Mosquitoes were identified by morphological features, and molecular methods were also used for determination of selected individuals belonging to cryptic species from the Anopheles maculipennis and Culex pipiens complexes. The presence of filarioid DNA (Dirofilaria repens, Dirofilaria immitis and Setaria spp.) was detected using standard PCR approaches and sequencing. RESULTS: A total of 6957 female mosquitoes were collected for the study. Overall, the most abundant mosquito species was Aedes vexans, closely followed by unidentified members of the Cx. pipiens complex and the less numerous but still plentiful Ochlerotatus sticticus species. Further investigation of mosquito material revealed 4.26% relative prevalence of Dirofilaria spp., whereby both species, D. repens and D. immitis, were identified. The majority of positive mosquito pools had their origin in a floodplain area on the outskirts of the city, with a relative prevalence of 5.32%; only two mosquito pools (1.26%) were shown to be positive in the residential zone of Bratislava. Setaria spp. DNA was not detected in mosquitoes within this study. CONCLUSIONS: The study presented herein represents initial research focused on molecular mosquito screening for filarioid parasites in urban and urban-fringe habitats of Bratislava, Slovakia. Molecular analyses within the Cx. pipiens complex identified two biotypes: Cx. pipiens biotype pipiens and Cx. pipiens biotype molestus. To our knowledge, Dirofilaria spp. were detected for the first time in Slovakia in mosquitoes other than Ae. vexans, i.e. D. repens in Anopheles messeae and unidentified members of An. maculipennis and Cx. pipiens complexes, and D. immitis in Coquillettidia richiardii and Cx. pipiens biotype pipiens. Both dirofilarial species were found in Och. sticticus. The suitable conditions for the vectors' biology would represent the main risk factor for dirofilariosis transmission.
- Klíčová slova
- Anopheles maculipennis complex, Culex pipiens complex, Dirofilaria, Mosquito-borne diseases, Xenomonitoring,
- MeSH
- Anopheles anatomie a histologie klasifikace genetika růst a vývoj MeSH
- Culex anatomie a histologie klasifikace genetika růst a vývoj MeSH
- Dirofilaria immitis genetika izolace a purifikace MeSH
- Dirofilaria repens genetika izolace a purifikace MeSH
- dirofilarióza epidemiologie přenos MeSH
- hodnocení rizik MeSH
- komáří přenašeči anatomie a histologie klasifikace genetika růst a vývoj MeSH
- populační dynamika * MeSH
- Setaria (Nematoda) genetika izolace a purifikace MeSH
- setariáza epidemiologie přenos MeSH
- urbanizace * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Slovenská republika epidemiologie MeSH
BACKGROUND: Reliable taxonomy underpins communication in all of biology, not least nature conservation and sustainable use of ecosystem resources. The flexibility of taxonomic interpretations, however, presents a serious challenge for end-users of taxonomic concepts. Users need standardised and continuously harmonised taxonomic reference systems, as well as high-quality and complete taxonomic data sets, but these are generally lacking for non-specialists. The solution is in dynamic, expertly curated web-based taxonomic tools. The Pan-European Species-directories Infrastructure (PESI) worked to solve this key issue by providing a taxonomic e-infrastructure for Europe. It strengthened the relevant social (expertise) and information (standards, data and technical) capacities of five major community networks on taxonomic indexing in Europe, which is essential for proper biodiversity assessment and monitoring activities. The key objectives of PESI were: 1) standardisation in taxonomic reference systems, 2) enhancement of the quality and completeness of taxonomic data sets and 3) creation of integrated access to taxonomic information. NEW INFORMATION: This paper describes the results of PESI and its future prospects, including the involvement in major European biodiversity informatics initiatives and programs.
- Klíčová slova
- AlgaeBase, Authority File, EU-nomen, EUBON, Euro+Med PlantBase, European Register of Marine Species, European taxonomic backbone, Fauna Europaea, Global Names Architecture, INSPIRE, Index Fungorum, International Plant Names Index (IPNI), LifeWatch, Nomenclature, PESI, Taxonomic indexing, Taxonomy, ZooBank,
- Publikační typ
- časopisecké články MeSH