"SFB 940 project B8"
Dotaz
Zobrazit nápovědu
Executive functions are well-known to undergo developmental changes from childhood to adulthood. Considerable efforts have been made to elucidate the affected system neurophysiological mechanisms. But while it is well-known that developmental changes affect intra-individual variability, this potential bias has largely been neglected when investigating the neurophysiology underlying developmental differences between children and adults. We hypothesize that due to differences in intra-individual variability of neural processes between children and adults, reliable group differences will only be evident after accounting for intra-individual variability in neurophysiological processes. We, therefore, investigate response-inhibition processes as an important instance of executive control in children (between 10 and 14 years) and adults (between 20 and 29 years) and decompose EEG data on the basis of the latency and temporal variability. This was combined with source localization. Children showed more impulsive behavior than adults. Importantly, a reliable match between the neurophysiological and behavioral data could only be found when accounting for intra-individual variability in the EEG data. These decomposed data showed that children and adults use similar neurophysiological mechanisms at the response selection level to accomplish inhibitory control, but seem to engage different neuroanatomical structures to do so according to source localization results: In adults, these processes were related to the medial frontal cortex. In children, the same processes were reflected in a shift of the scalp topography and related to the superior parietal cortex. These shifts in neural networks were associated with lower effectiveness in exerting inhibitory control. However, these differences in the functional neuroanatomical architecture can only be seen when intra-individual variability is taken into account.
- Klíčová slova
- Adult, Children, Cognitive control, Development, EEG, Response inhibition, Source localization,
- MeSH
- automatizované zpracování dat MeSH
- dítě MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- evokované potenciály fyziologie MeSH
- lidé MeSH
- mapování mozku * MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek anatomie a histologie fyziologie MeSH
- nervové dráhy fyziologie MeSH
- nervový útlum fyziologie MeSH
- regresní analýza MeSH
- stárnutí fyziologie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Cognitive flexibility is a major requirement for successful goal-directed behavior and their neurobiological underpinnings are becoming better understood. However, the role of the norepinephrine system during task switching is largely enigmatic, despite neurobiological considerations make it likely that the norepinephrine system likely plays an important role. Theoretical considerations also suggest that the norepinephrine system mainly modulates task-switching processes when these rely upon working memory mechanisms. This topic was examined in the current system neurophysiological study integrating event-related potential (ERP) with pupil diameter data as a proximate the norepinephrine system activity. Combined with source localization methods, human brain structure, brain function, and phasic modulations by an important neurobiological system were integrated. The results show that cognitive-neurophysiological subprocesses during the actual switching processes, reflected by the N2 and P3 ERP components, are not modulated by the norepinephrine system. Rather, this system modulates preparatory processes in the fore period of stimuli signaling possible switches of response sets. The source localization results show that this is achieved by modulating neural processes in the temporo-parietal junction (BA40). Importantly, these phasic modulatory effects of the norepinephrine system were only evident when working memory processes had to be used to guide the selection of the appropriate responses for task switching.
- Klíčová slova
- EEG, Memory, Norepinephrine, Parietal cortex, Pupil diameter, Source localization, Task switching, Working,
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- evokované potenciály fyziologie MeSH
- kognice fyziologie MeSH
- lidé MeSH
- mapování mozku * MeSH
- mladý dospělý MeSH
- noradrenalin fyziologie MeSH
- paměť fyziologie MeSH
- podněty MeSH
- pozornost fyziologie MeSH
- pupila MeSH
- reakční čas fyziologie MeSH
- temenní lalok fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- noradrenalin MeSH
Sensorimotor integration is essential for successful motor control and the somatosensory modality has been shown to have strong effects on the execution of motor plans. The primary (SI) and the secondary somatosensory (SII) cortices are known to differ in their neuroanatomical connections to prefrontal areas, as well as in their involvement to encode cognitive aspects of tactile processing. Here, we ask whether the area-specific processing architecture or the structural neuroanatomical connections with prefrontal areas determine the efficacy of sensorimotor integration processes for motor control. In a system neurophysiological study including EEG signal decomposition (i.e., residue iteration decomposition, RIDE) and source localization, we investigated this question using vibrotactile stimuli optimized for SI or SII processing. The behavioral data show that when being triggered via the SI area, inhibitory control of motor processes is stronger as when being triggered via the SII area. On a neurophysiological level, these effects were reflected in the C-cluster as a result of a temporal decomposition of EEG data, indicating that the sensory processes affecting motor inhibition modulate the response selection level. These modulations were associated with a stronger activation of the right inferior frontal gyrus extending to the right middle frontal gyrus as parts of a network known to be involved in inhibitory motor control when response inhibition is triggered over SI. In addition, areas important for sensorimotor integration like the postcentral gyrus and superior parietal cortex showed activation differences. The data suggest that connection patterns are more important for sensorimotor integration and control than the more restricted area-specific processing architecture.
- Klíčová slova
- EEG, Motor control, Neurophysiology, Somatosensory system, Source localization,
- MeSH
- analýza rozptylu MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- evokované potenciály fyziologie MeSH
- inhibice (psychologie) * MeSH
- lidé MeSH
- mapování mozku * MeSH
- mladiství MeSH
- mladý dospělý MeSH
- pohybová aktivita fyziologie MeSH
- psychomotorický výkon fyziologie MeSH
- shluková analýza MeSH
- somatosenzorické korové centrum anatomie a histologie fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH