Molecular techniques like metabarcoding, while promising for exploring diversity of communities, are often impeded by the lack of reference DNA sequences available for taxonomic annotation. Our study explores the benefits of combining targeted DNA barcoding and morphological taxonomy to improve metabarcoding efficiency, using beach meiofauna as a case study. Beaches are globally important ecosystems and are inhabited by meiofauna, microscopic animals living in the interstitial space between the sand grains, which play a key role in coastal biodiversity and ecosystem dynamics. However, research on meiofauna faces challenges due to limited taxonomic expertise and sparse sampling. We generated 775 new cytochrome c oxidase I DNA barcodes from meiofauna specimens collected along the Netherlands' west coast and combined them with the NCBI GenBank database. We analysed alpha and beta diversity in 561 metabarcoding samples from 24 North Sea beaches, a region extensively studied for meiofauna, using both the enriched reference database and the NCBI database without the additional reference barcodes. Our results show a 2.5-fold increase in sequence annotation and a doubling of species-level Operational Taxonomic Units (OTUs) identification when annotating the metabarcoding data with the enhanced database. Additionally, our analyses revealed a bell-shaped curve of OTU richness across the intertidal zone, aligning more closely with morphological analysis patterns, and more defined community dissimilarity patterns between supralittoral and intertidal sites. Our research highlights the importance of expanding molecular reference databases and combining morphological taxonomy with molecular techniques for biodiversity assessments, ultimately improving our understanding of coastal ecosystems.
- Klíčová slova
- DNA barcoding, Molecular reference database, community ecology, invertebrates,
- MeSH
- bezobratlí genetika klasifikace MeSH
- biodiverzita MeSH
- ekosystém MeSH
- koupací pláže MeSH
- metagenomika metody MeSH
- respirační komplex IV * genetika MeSH
- taxonomické DNA čárové kódování * metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Nizozemsko MeSH
- Severní moře MeSH
- Názvy látek
- respirační komplex IV * MeSH
Historical climate data indicate that the Earth has passed through multiple geological periods with much warmer-than-present climates, including epochs of the Miocene (23-5.3 mya BP) with temperatures 3-4°C above present, and more recent interglacial stages of the Quaternary, for example, Marine Isotope Stage 11c (approx. 425-395 ka BP) and Middle Holocene thermal maximum (7.5-4.2 ka BP), during which continental glaciers may have melted entirely. Such warm periods would have severe consequences for ice-obligate fauna in terms of their distribution, biodiversity and population structure. To determine the impacts of these climatic events in the Nordic cryosphere, we surveyed ice habitats throughout mainland Norway and Svalbard ranging from maritime glaciers to continental ice patches (i.e. non-flowing, inland ice subjected to deep freezing overwinter), finding particularly widespread populations of ice-inhabiting bdelloid rotifers. Combined mitochondrial and nuclear DNA sequencing identified approx. 16 undescribed, species-level rotifer lineages that revealed an ancestry predating the Quaternary (> 2.58 mya). These rotifers also displayed robust freeze/thaw tolerance in laboratory experiments. Collectively, these data suggest that extensive ice refugia, comparable with stable ice patches across the contemporary Norwegian landscape, persisted in the cryosphere over geological time, and may have facilitated the long-term survival of ice-obligate Metazoa before and throughout the Quaternary.
- Klíčová slova
- Norway, climate change, evolution, ice, microinvertebrate, rotifer,
- MeSH
- ekosystém MeSH
- fylogeneze MeSH
- ledový příkrov MeSH
- mitochondriální DNA genetika MeSH
- vířníci * genetika klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Arktida MeSH
- Norsko MeSH
- Svalbard MeSH
- Názvy látek
- mitochondriální DNA MeSH
BACKGROUND: Bdelloid rotifers are micro-invertebrates distributed worldwide, from temperate latitudes to the most extreme areas of the planet like Antarctica or the Atacama Desert. They have colonized any habitat where liquid water is temporarily available, including terrestrial environments such as soils, mosses, and lichens, tolerating desiccation and other types of stress such as high doses of ionizing radiation (IR). It was hypothesized that bdelloid desiccation and radiation resistance may be attributed to their potential ability to repair DNA double-strand breaks (DSBs). Here, these properties are investigated and compared among nine bdelloid species collected from both mild and harsh habitats, addressing the correlation between the ability of bdelloid rotifers to survive desiccation and their capacity to repair massive DNA breakage in a phylogenetically explicit context. Our research includes both specimens isolated from habitats that experience frequent desiccation (at least 1 time per generation), and individuals sampled from habitats that rarely or never experienced desiccation. RESULTS: Our analysis reveals that DNA repair prevails in somatic cells of both desiccation-tolerant and desiccation-sensitive bdelloid species after exposure to X-ray radiation. Species belonging to both categories are able to withstand high doses of ionizing radiation, up to 1000 Gy, without experiencing any negative effects on their survival. However, the fertility of two desiccation-sensitive species, Rotaria macrura and Rotaria rotatoria, was more severely impacted by low doses of radiation than that of desiccation-resistant species. Surprisingly, the radioresistance of desiccation-resistant species is not related to features of their original habitat. Indeed, bdelloids isolated from Atacama Desert or Antarctica were not characterized by a higher radioresistance than species found in more temperate environments. CONCLUSIONS: Tolerance to desiccation and radiation are supported as ancestral features of bdelloid rotifers, with a group of species of the genus Rotaria having lost this trait after colonizing permanent water habitats. Together, our results provide a comprehensive overview of the evolution of desiccation and radiation resistance among bdelloid rotifers.
- Klíčová slova
- Ancestral character reconstructions, Antarctica, Atacama Desert, Bdelloid rotifers, DNA repair, Desiccation, Extreme tolerance,
- MeSH
- dvouřetězcové zlomy DNA MeSH
- lidé MeSH
- oprava DNA MeSH
- vířníci * genetika MeSH
- voda MeSH
- vysoušení * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- voda MeSH
The community composition of any group of organisms should theoretically be determined by a combination of assembly processes including resource partitioning, competition, environmental filtering, and phylogenetic legacy. Environmental DNA studies have revealed a huge diversity of protists in all environments, raising questions about the ecological significance of such diversity and the degree to which they obey to the same rules as macroscopic organisms. The fast-growing cultivable protist species on which hypotheses are usually experimentally tested represent only a minority of the protist diversity. Addressing these questions for the lesser known majority can only be inferred through observational studies. We conducted an environmental DNA survey of the genus Nebela, a group of closely related testate (shelled) amoeba species, in different habitats within Sphagnum-dominated peatlands. Identification based on the mitochondrial cytochrome c oxidase 1 gene, allowed species-level resolution as well as phylogenetic reconstruction. Community composition varied strongly across habitats and associated environmental gradients. Species showed little overlap in their realized niche, suggesting resource partitioning, and a strong influence of environmental filtering driving community composition. Furthermore, phylogenetic clustering was observed in the most nitrogen-poor samples, supporting phylogenetic inheritance of adaptations in the group of N. guttata. This study showed that the studied free-living unicellular eukaryotes follow to community assembly rules similar to those known to determine plant and animal communities; the same may be true for much of the huge functional and taxonomic diversity of protists.
- Klíčová slova
- Nearest Taxon Index, Sphagnum-dominated peatlands, environmental filtering, niche partitioning, phylogenetic clustering/over-dispersion, uncultivable protists,
- MeSH
- ekologie MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- rašeliníky * MeSH
- rostliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Glaciers and ice sheets are a peculiar biome with characteristic abiotic and biotic components. Mountain glaciers are predicted to decrease their volume and even to melt away within a few decades. Despite the threat of a disappearing biome, the diversity and the role of microscopic animals as consumers at higher trophic levels in the glacial biome still remain largely unknown. In this study, we report data on tardigrades and rotifers found in glacial mosses on Mount Stanley, Uganda, and describe a new tardigrade species. Adropion afroglacialis sp. nov. differs from the most similar species by having granulation on the cuticle, absence of cuticular bars under the claws, and a different macroplacoid length sequence. We also provide a morphological diagnosis for another unknown tardigrade species of the genus Hypsibius. The rotifers belonged to the families Philodinidae and Habrotrochidae. In addition, we discuss the diversity of microinvertebrates and potential role of tardigrades and rotifers on mountain glaciers as top consumers. As for any organism living apparently exclusively in glacial habitats on tropical glaciers, their extinction in the near future is inevitable, possibly before we can even discover their existence.
- Klíčová slova
- Tardigrada, Adropion afroglacialis sp. nov., biodiversity loss, endangered habitats, extreme ecosystems, extremophiles, Hypsibius, tropical glaciers, Uganda,
- MeSH
- Bryophyta MeSH
- ledový příkrov MeSH
- Tardigrada * MeSH
- vířníci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Uganda MeSH