Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress. Despite extensive studies on bacteria and eukaryotes, understanding factor-mediated ribosome dimerization or anti-association in archaea remains elusive. Here, we present cryo-electron microscopy structures of an archaeal 30S dimer complexed with an archaeal ribosome dimerization factor (designated aRDF), from Pyrococcus furiosus, resolved at a resolution of 3.2 Å. The complex features two 30S subunits stabilized by aRDF homodimers in a unique head-to-body architecture, which differs from the disome architecture observed during hibernation in bacteria and eukaryotes. aRDF interacts directly with eS32 ribosomal protein, which is essential for subunit association. The binding mode of aRDF elucidates its anti-association properties, which prevent the assembly of archaeal 70S ribosomes.
- MeSH
- archeální proteiny * chemie metabolismus ultrastruktura MeSH
- dimerizace MeSH
- elektronová kryomikroskopie * MeSH
- malé podjednotky ribozomu archebakteriální chemie metabolismus MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- Pyrococcus furiosus * metabolismus MeSH
- ribozomální proteiny * chemie metabolismus MeSH
- ribozomy metabolismus ultrastruktura chemie MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- archeální proteiny * MeSH
- ribozomální proteiny * MeSH
Estradiol dimers (EDs) possess significant anticancer activity by targeting tubulin dynamics. In this study, we synthesised 12 EDs variants via copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction, focusing on structural modifications within the aromatic bridge connecting two estradiol moieties. In vitro testing of these EDs revealed a marked improvement in selectivity towards cancerous cells, particularly for ED1-8. The most active compounds, ED3 (IC50 = 0.38 μM in CCRF-CEM) and ED5 (IC50 = 0.71 μM in CCRF-CEM) demonstrated cytotoxic effects superior to 2-methoxyestradiol (IC50 = 1.61 μM in CCRF-CEM) and exhibited anti-angiogenic properties in an endothelial cell tube-formation model. Cell-based experiments and in vitro assays revealed that EDs interfere with mitotic spindle assembly. Additionally, we proposed an in silico model illustrating the probable binding modes of ED3 and ED5, suggesting that dimers with a simple linker and a single substituent on the aromatic central ring possess enhanced characteristics compared to more complex dimers.
- Klíčová slova
- Estradiol, cancer cell, dimer, in silico, tubulin,
- MeSH
- antitumorózní látky * farmakologie chemická syntéza chemie MeSH
- dimerizace MeSH
- estradiol * farmakologie chemie chemická syntéza MeSH
- léky antitumorózní - screeningové testy * MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- proliferace buněk * účinky léků MeSH
- syntetická chemie okamžité shody MeSH
- vztah mezi dávkou a účinkem léčiva * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antitumorózní látky * MeSH
- estradiol * MeSH
G-quadruplexes (G4s) formed within RNA are emerging as promising targets for therapeutic intervention in cancer, neurodegenerative disorders and infectious diseases. Sequences containing a succession of short GG blocks, or uneven G-tract lengths unable to form three-tetrad G4s (GG motifs), are overwhelmingly more frequent than canonical motifs involving multiple GGG blocks. We recently showed that DNA is not able to form stable two-tetrad intramolecular parallel G4s. Whether RNA GG motifs can form intramolecular G4s under physiological conditions and play regulatory roles remains a burning question. In this study, we performed a systematic analysis and experimental evaluation of a number of biologically important RNA regions involving RNA GG motifs. We show that most of these motifs do not form stable intramolecular G4s but need to dimerize to form stable G4 structures. The strong tendency of RNA GG motif G4s to associate may participate in RNA-based aggregation under conditions of cellular stress.
- MeSH
- dimerizace MeSH
- G-kvadruplexy * MeSH
- genetická transkripce MeSH
- lidé MeSH
- nukleotidové motivy * MeSH
- RNA * chemie metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA * MeSH
Knowledge of reliable geometries and associated intermolecular interaction energy (ΔE) values at key fragments of the potential energy surface (PES) in the gas phase is indispensable for the modeling of various properties of the pyrene dimer (PYD) and other important aggregate systems of a comparatively large size (ca. 50 atoms). The performance of the domain-based local pair natural orbital (DLPNO) variant of the coupled-cluster theory with singles, doubles and perturbative triples in the complete basis set limit [CCSD(T)/CBS] method for highly accurate predictions of the ΔE at a variety of regions of the PES was established for a representative set of pi-stacked dimers, which also includes the PYD. For geometries with the distance between stacked monomers close to a value of such a distance in the ΔE minimum structure, an excellent agreement between the canonical CCSD(T)/CBS results and their DLPNO counterparts was found. This finding enabled us to accurately characterize the lowest-lying configurations of the PYD, and the physical origin of their stabilization was thoroughly analyzed. The proposed DLPNO-CCSD(T)/CBS procedure should be applied with the aim of safely locating a global minimum of the PES and firmly establishing the pertaining ΔE of even larger dimers in studies of packing motifs of organic electronic devices and other novel materials.
- Klíčová slova
- CCSD(T), DLPNO, intermolecular interactions, potential energy surfaces, pyrene dimer,
- MeSH
- dimerizace * MeSH
- molekulární modely MeSH
- pyreny * chemie MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- pyrene MeSH Prohlížeč
- pyreny * MeSH
The benzene dimer (BD) is an archetypal model of π∙∙∙π and C-H∙∙∙π noncovalent interactions as they occur in its cofacial and perpendicular arrangements, respectively. The enthalpic stabilization of the related BD structures has been debated for a long time and is revisited here. The revisit is based on results of computations that apply the coupled-cluster theory with singles, doubles and perturbative triples [CCSD(T)] together with large basis sets and extrapolate results to the complete basis set (CBS) limit in order to accurately characterize the three most important stationary points of the intermolecular interaction energy (ΔE) surface of the BD, which correspond to the tilted T-shaped (TT), fully symmetric T-shaped (FT) and slipped-parallel (SP) structures. In the optimal geometries obtained by searching extensive sets of the CCSD(T)/CBS ΔE data of the TT, FT and SP arrangements, the resulting ΔE values were -11.84, -11.34 and -11.21 kJ/mol, respectively. The intrinsic strength of the intermolecular bonding in these configurations was evaluated by analyzing the distance dependence of the CCSD(T)/CBS ΔE data over wide ranges of intermonomer separations. In this way, regions of the relative distances that favor BD structures with either π∙∙∙π or C-H∙∙∙π interactions were found and discussed in a broader context.
- Klíčová slova
- CCSD(T), SAPT, interaction energy, intermolecular stacking, noncovalent interactions,
- MeSH
- benzen * chemie MeSH
- dimerizace * MeSH
- kvantová teorie MeSH
- molekulární modely MeSH
- termodynamika MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzen * MeSH
The transcriptional co-activator lens epithelium-derived growth factor/p75 (LEDGF/p75) plays an important role in the biology of the cell and in several human diseases, including MLL-rearranged acute leukemia, autoimmunity, and HIV-1 infection. In both health and disease, LEDGF/p75 functions as a chromatin tether that interacts with proteins such as MLL1 and HIV-1 integrase via its integrase-binding domain (IBD) and with chromatin through its N-terminal PWWP domain. Recently, dimerization of LEDGF/p75 was shown, mediated by a network of electrostatic contacts between amino acids from the IBD and the C-terminal α6-helix. Here, we investigated the functional impact of LEDGF/p75 variants on the dimerization using biochemical and cellular interaction assays. The data demonstrate that the C-terminal α6-helix folds back in cis on the IBD of monomeric LEDGF/p75. We discovered that the presence of DNA stimulates LEDGF/p75 dimerization. LEDGF/p75 dimerization enhances binding to MLL1 but not to HIV-1 integrase, a finding that was observed in vitro and validated in cell culture. Whereas HIV-1 replication was not dependent on LEDGF/p75 dimerization, colony formation of MLLr-dependent human leukemic THP-1 cells was. In conclusion, our data indicate that intricate changes in the quaternary structure of LEDGF/p75 modulate its tethering function.
- Klíčová slova
- DNA-binding protein, DNA-induced protein binding, LEDGF/p75, chromatin structure, protein dynamic, protein–DNA interaction, protein–protein interaction,
- MeSH
- chromatin * MeSH
- dimerizace MeSH
- DNA metabolismus MeSH
- lidé MeSH
- mezibuněčné signální peptidy a proteiny * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin * MeSH
- DNA MeSH
- lens epithelium-derived growth factor MeSH Prohlížeč
- mezibuněčné signální peptidy a proteiny * MeSH
Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.
- Klíčová slova
- E. coli, FGF2, Protein trafficking, Protein-lipid interaction, Protein-protein interaction, Unconventional protein secretion, biochemistry, chemical biology, cho, cho k1, hela s3,
- MeSH
- dimerizace MeSH
- disulfidy MeSH
- extracelulární prostor * MeSH
- fibroblastový růstový faktor 2 * MeSH
- sodíko-draslíková ATPasa MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- disulfidy MeSH
- fibroblastový růstový faktor 2 * MeSH
- sodíko-draslíková ATPasa MeSH
Accurate estimates of intermolecular interaction energy, ΔE, are crucial for modeling the properties of organic electronic materials and many other systems. For a diverse set of 50 dimers comprising up to 50 atoms (Set50-50, with 7 of its members being models of single-stacking junctions), benchmark ΔE data were compiled. They were obtained by the focal-point strategy, which involves computations using the canonical variant of the coupled cluster theory with singles, doubles, and perturbative triples [CCSD(T)] performed while applying a large basis set, along with extrapolations of the respective energy components to the complete basis set (CBS) limit. The resulting ΔE data were used to gauge the performance for the Set50-50 of several density-functional theory (DFT)-based approaches, and of one of the localized variants of the CCSD(T) method. This evaluation revealed that (1) the proposed "silver standard" approach, which employs the localized CCSD(T) method and CBS extrapolations, can be expected to provide accuracy better than two kJ/mol for absolute values of ΔE, and (2) from among the DFT techniques, computationally by far the cheapest approach (termed "ωB97X-3c/vDZP" by its authors) performed remarkably well. These findings are directly applicable in cost-effective yet reliable searches of the potential energy surfaces of noncovalent complexes.
- Klíčová slova
- CCSD(T), DFT, interaction energy, noncovalent interactions, supramolecular junctions,
- MeSH
- dimerizace MeSH
- elektronika * MeSH
- fyzikální jevy MeSH
- polymery MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polymery MeSH
SARS-CoV-2 encodes eight accessory proteins, one of which, ORF8, has a poorly conserved sequence with SARS-CoV and its role in viral pathogenicity has recently been identified. ORF8 in SARS-CoV-2 has a unique functional feature that allows it to form a dimer structure linked by a disulfide bridge between Cys20 and Cys20 (S-S). This study provides structural characterization of natural mutant variants as well as the identification of potential drug candidates capable of binding directly to the interchain disulfide bridge. The lead compounds reported in this work have a tendency to settle in the dimeric interfaces by direct interaction with the disulfide bridge. These molecules may disturb the dimer formation and may have an inhibition impact on its potential functional role in host immune evasion and virulence pathogenicity. This work provides detailed insights on the sequence and structural variability through computational mutational studies, as well as potent drug candidates with the ability to interrupt the intermolecular disulfide bridge formed between Cys20 and Cys20. Furthermore, the interactions of ORF8 peptides complexed with MHC-1 is studied, and the binding mode reveals that certain ORF8 peptides bind to MHC-1 in a manner similar to other viral peptides. Overall, this study is a narrative of various computational approaches used to provide detailed structural insights into SARS-CoV-2 ORF8 interchain disulfide bond disruptors.
- Klíčová slova
- COVID-19, MHC-1, ORF8, SARS-CoV, SARS-CoV-2, dimer, disulfide bond, immune evasion, molecular dynamics, protein–protein interactions, viral peptides,
- MeSH
- COVID-19 * MeSH
- dimerizace MeSH
- lidé MeSH
- SARS-CoV-2 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ORF8 protein, SARS-CoV-2 MeSH Prohlížeč
Lactic and malic acids are key substances in a number of biochemical processes in living cells and are also utilized in industry. Vibrational spectroscopy represents an efficient and sensitive way to study their structure and interactions. Since water is the natural environment, proper understanding of their molecular dynamics in aqueous solutions is of critical importance. To this end, we employed Raman spectroscopy and Raman optical activity (ROA) to study the conformation of l-lactic and l-malic acids in water (while varying pH, temperature, and concentration), with special emphasis on their double hydrogen bonding dimerization propensity. Raman and ROA experimental data were supported by extensive theoretical calculations of the vibrational properties and by additional experiments (IR absorption, vibrational circular dichroism, and NMR). Conformational behavior of the acids in water was described by molecular dynamics simulations. Reliability of the results was verified by calculating the vibrational properties of populated conformers and by comparing thus obtained spectral features with the experimental data. Calculations estimated the incidence of H-bonded dimers in water to be low in lactic acid and comparable to monomers in malic acid. The "hybrid" approach presented here reveals limitations of relying on the experimental spectra alone to study dimer formation.