Dysregulation of extracellular matrix (ECM) homeostasis plays a pivotal role in the accelerated degradation of cartilage, presenting a notable challenge for effective osteoarthritis (OA) treatment and cartilage regeneration. In this study, we introduced an injectable hydrogel based on streamlined-zinc oxide (ZnO), which is responsive to matrix metallopeptidase (MMP), for the delivery of miR-17-5p. This approach aimed to address cartilage damage by regulating ECM homeostasis. The ZnO/miR-17-5p composite functions by releasing zinc ions to attract native bone marrow mesenchymal stem cells, thereby fostering ECM synthesis through the proliferation of new chondrocytes. Concurrently, sustained delivery of miR-17-5p targets enzymes responsible for matrix degradation, thereby mitigating the catabolic process. Notably, the unique structure of the streamlined ZnO nanoparticles is distinct from their conventional spherical counterparts, which not only optimizes the rheological and mechanical properties of the hydrogels, but also enhances the efficiency of miR-17-5p transfection. Our male rat model demonstrated that the combination of streamlined ZnO, MMP-responsive hydrogels, and miRNA-based therapy effectively managed the equilibrium between catabolism and anabolism within the ECM, presenting a fresh perspective in the realm of OA treatment.
- MeSH
- buněčná diferenciace * účinky léků MeSH
- chondrocyty metabolismus účinky léků cytologie MeSH
- chrupavka * účinky léků MeSH
- extracelulární matrix * metabolismus účinky léků MeSH
- homeostáza účinky léků MeSH
- hydrogely * chemie MeSH
- kloubní chrupavka účinky léků MeSH
- krysa rodu Rattus MeSH
- matrixové metaloproteinasy metabolismus MeSH
- mezenchymální kmenové buňky cytologie účinky léků metabolismus MeSH
- mikro RNA genetika metabolismus MeSH
- osteoartróza terapie patologie MeSH
- oxid zinečnatý chemie MeSH
- potkani Sprague-Dawley MeSH
- regenerace MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydrogely * MeSH
- matrixové metaloproteinasy MeSH
- mikro RNA MeSH
- oxid zinečnatý MeSH
Accumulation of extracellular matrix (ECM) in liver fibrosis is associated with changes in protein abundance and composition depending upon etiology of the underlying liver disease. Current efforts to unravel etiology-specific mechanisms and pharmacological targets rely on several models of experimental fibrosis. Here, we characterize and compare dynamics of hepatic proteome remodeling during fibrosis development and spontaneous healing in experimental mouse models of hepatotoxic (carbon tetrachloride [CCl4] intoxication) and cholestatic (3,5-diethoxycarbonyl-1,4-dihydrocollidine [DDC] feeding) injury. Using detergent-based tissue extraction and mass spectrometry, we identified compartment-specific changes in the liver proteome with detailed attention to ECM composition and changes in protein solubility. Our analysis revealed distinct time-resolved CCl4 and DDC signatures, with identified signaling pathways suggesting limited healing and a potential for carcinogenesis associated with cholestasis. Correlation of protein abundance profiles with fibrous deposits revealed extracellular chaperone clusterin with implicated role in fibrosis resolution. Dynamics of clusterin expression was validated in the context of human liver fibrosis. Atomic force microscopy of fibrotic livers complemented proteomics with profiles of disease-associated changes in local liver tissue mechanics. This study determined compartment-specific proteomic landscapes of liver fibrosis and delineated etiology-specific ECM components, providing thus a foundation for future antifibrotic therapies.
Alcoholism or chronic conditions like hepatitis damage the liver. Over time, scar tissue builds up in the liver, causing cirrhosis. The scaring results from the liver’s repeated attempts to repair itself by creating more structural proteins called extracellular matrix proteins. A buildup of these scaffolding proteins leads to tissue stiffening or fibrosis. Fibrosis may heal in some cases but in others, it may progress to cirrhosis, liver cancer or liver failure. Learning more about these processes may help scientists and clinicians understand why fibrosis is reversible in some cases but not others. It may also allow them to develop treatments that can treat or reverse fibrosis and prevent cirrhosis, liver cancer, or liver failure. The first step is studying how fibrosis occurs in mouse models that mimic different types of liver disease. For example, repetitive ingestion of a toxic substance, such as alcohol, can cause one type of liver disease. However, slowing or stalling bile flow through the biliary system (the liver, gallbladder, and bile ducts), leads to a different type of chronic liver injury. Jirouskova et al. identify an extracellular protein called clusterin that may help heal fibrosis. The experiments used mouse models of two different types of liver disease. One mimicked liver disease caused by repetitive toxin injury, and the other modelled liver disease caused by chronic stalling of the bile flow in the liver (cholestasis). In the experiments, Jirouskova et al. looked at all the proteins made in each type of liver disease as the animals developed fibrosis or their fibrosis resolved. They also studied extracellular matrix proteins and how they affected molecular signaling in the liver tissue. The experiments revealed different patterns of protein production and healing in the different types of liver disease. The animals with liver diseases caused by chronic cholestatic injury were less likely to heal their livers and showed potential to progress to liver cancer. Production of the clusterin protein was connected with better liver recovery from toxic injuries. Jirouskova et al. provide a comprehensive map of all the proteins produced over the course of liver fibrosis progression and healing in two different animal models of liver disease. Scientists and clinicians may use this information to study liver disease types. It may also one day help them personalize patient's therapies. The experiments show that extracellular matrix proteins are essential contributors to fibrosis and key signaling agents in liver disease. This may make them good targets for new therapies. Boosting clusterin production may be one approach to promoting liver recovery. More studies are needed to confirm this before such therapies can be developed and tested in humans.
- Klíčová slova
- atomic force microscopy, clusterin, collagen deposits, human, mass spectrometry, matrisome, medicine, mouse,
- MeSH
- chlorid uhličitý toxicita MeSH
- cholestáza * metabolismus chemicky indukované patologie MeSH
- extracelulární matrix metabolismus MeSH
- jaterní cirhóza * metabolismus patologie chemicky indukované MeSH
- játra * patologie metabolismus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- proteom * metabolismus analýza MeSH
- proteomika MeSH
- pyridiny MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3,5-diethoxycarbonyl-1,4-dihydrocollidine MeSH Prohlížeč
- chlorid uhličitý MeSH
- proteom * MeSH
- pyridiny MeSH
The extracellular matrix (ECM) plays a crucial role in organoid cultures by supporting cell proliferation and differentiation. A key feature of the ECM is its mechanical influence on the surrounding cells, directly affecting their behavior. Matrigel, the most commonly used ECM, is limited by its animal-derived origin, batch variability, and uncontrollable mechanical properties, restricting its use in 3D cell-model-based mechanobiological studies. Poly(2-alkyl-2-oxazoline) (PAOx) synthetic hydrogels represent an appealing alternative because of their reproducibility and versatile chemistry, enabling tuning of hydrogel stiffness and functionalization. Here, we studied PAOx hydrogels with differing compressive moduli for their potential to support 3D cell growth. PAOx hydrogels support spheroid and organoid growth over several days without the addition of ECM components. Furthermore, we discovered intestinal organoid epithelial polarity reversion in PAOx hydrogels and demonstrate how the tunable mechanical properties of PAOx can be used to study effects on the morphology and oxygenation of live multicellular spheroids.
- MeSH
- buněčné kultury MeSH
- buněčné sféroidy * cytologie účinky léků MeSH
- extracelulární matrix chemie MeSH
- hydrogely * chemie MeSH
- lidé MeSH
- organoidy * cytologie účinky léků MeSH
- oxazoly * chemie MeSH
- proliferace buněk účinky léků MeSH
- střeva * cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydrogely * MeSH
- oxazoly * MeSH
Extracellular matrix (ECM) is a network of macromolecules which has two forms-perineuronal nets (PNNs) and a diffuse ECM (dECM)-both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility. Two months after oral treatment of rats with 4-methylumbelliferone (4-MU), an inhibitor of hyaluronan (HA) synthesis, we found downregulated staining for PNNs, HA, chondroitin sulfate proteoglycans, and glial fibrillary acidic protein. These changes were enhanced after 4 and 6 months and were reversible after a normal diet. Morphometric analysis further indicated atrophy of astrocytes. Using real-time iontophoretic method dysregulation of ECM resulted in increased ECS volume fraction α in the somatosensory cortex by 35%, from α = 0.20 in control rats to α = 0.27 after the 4-MU diet. Diffusion-weighted magnetic resonance imaging revealed a decrease of mean diffusivity and fractional anisotropy (FA) in the cortex, hippocampus, thalamus, pallidum, and spinal cord. This study shows the increase in ECS volume, a loss of FA, and changes in astrocytes due to modulation of PNNs and dECM that could affect extrasynaptic transmission, cell-to-cell communication, and neural plasticity.
- Klíčová slova
- extracellular diffusion, extracellular matrix, extracellular transmission, hyaluronan synthase, perineuronal nets, plasticity,
- MeSH
- astrocyty účinky léků MeSH
- extracelulární matrix * účinky léků metabolismus patologie MeSH
- extracelulární prostor * účinky léků metabolismus MeSH
- gliový fibrilární kyselý protein metabolismus MeSH
- hymekromon farmakologie MeSH
- krysa rodu Rattus MeSH
- kyselina hyaluronová metabolismus MeSH
- mozek * účinky léků metabolismus MeSH
- nervová síť * účinky léků patologie MeSH
- potkani Sprague-Dawley MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gliový fibrilární kyselý protein MeSH
- hymekromon MeSH
- kyselina hyaluronová MeSH
The extracellular matrix (ECM)-and its mechanobiology-regulates key cellular functions that drive tumor growth and development. Accordingly, mechanotherapy is emerging as an effective approach to treat fibrotic diseases such as cancer. Through restoring the ECM to healthy-like conditions, this treatment aims to improve tissue perfusion, facilitating the delivery of chemotherapies. In particular, the manipulation of ECM is gaining interest as a valuable strategy for developing innovative treatments based on nanoparticles (NPs). However, further progress is required; for instance, it is known that the presence of a dense ECM, which hampers the penetration of NPs, primarily impacts the efficacy of nanomedicines. Furthermore, most 2D in vitro studies fail to recapitulate the physiological deposition of matrix components. To address these issues, a comprehensive understanding of the interactions between the ECM and NPs is needed. This review focuses on the main features of the ECM and its complex interplay with NPs. Recent advances in mechanotherapy are discussed and insights are offered into how its combination with nanomedicine can help improve nanomaterials design and advance their clinical translation.
- Klíčová slova
- ECM, cancer therapy, mechanobiology, mechanotherapy, nanomedicine,
- MeSH
- extracelulární matrix * metabolismus MeSH
- lidé MeSH
- nádory * metabolismus farmakoterapie terapie MeSH
- nanočástice * chemie MeSH
- nanomedicína * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The alveolar-capillary interface is the key functional element of gas exchange in the human lung, and disruptions to this interface can lead to significant medical complications. However, it is currently challenging to adequately model this interface in vitro, as it requires not only the co-culture of human alveolar epithelial and endothelial cells but mainly the preparation of a biocompatible scaffold that mimics the basement membrane. This scaffold should support cell seeding from both sides, and maintain optimal cell adhesion, growth, and differentiation conditions. Our study investigates the use of polycaprolactone (PCL) nanofibers as a versatile substrate for such cell cultures, aiming to model the alveolar-capillary interface more accurately. We optimized nanofiber production parameters, utilized polyamide mesh UHELON as a mechanical support for scaffold handling, and created 3D-printed inserts for specialized co-cultures. Our findings confirm that PCL nanofibrous scaffolds are manageable and support the co-culture of diverse cell types, effectively enabling cell attachment, proliferation, and differentiation. Our research establishes a proof-of-concept model for the alveolar-capillary interface, offering significant potential for enhancing cell-based testing and advancing tissue-engineering applications that require specific nanofibrous matrices.
- Klíčová slova
- alveolar‐capillary interface, electrospinning, nanofibers, polycaprolactone (PCL), scaffold, tissue engineering,
- MeSH
- bazální membrána MeSH
- lidé MeSH
- nanovlákna * chemie MeSH
- ověření koncepční studie MeSH
- plicní alveoly * chemie cytologie MeSH
- polyestery * chemie MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polycaprolactone MeSH Prohlížeč
- polyestery * MeSH
INTRODUCTION: The aging process is intricately linked to alterations in cellular and tissue structures, with the respiratory system being particularly susceptible to age-related changes. Therefore, this study aimed to profile the activity of proteases using activity-based probes in lung tissues of old and young rats, focusing on the expression levels of different, in particular cathepsins G and X and matrix Metalloproteinases (MMPs). Additionally, the impact on extracellular matrix (ECM) components, particularly fibronectin, in relation to age-related histological and ultrastructural changes in lung tissues was investigated. MATERIALS AND METHODS: Lung tissues from old and young rats were subjected to activity-based probe profiling to assess the activity of different proteases. Expression levels of cathepsins G and X were quantified, and zymography was performed to evaluate matrix metalloproteinases activity. Furthermore, ECM components, specifically fibronectin, were examined for signs of degradation in the old lung tissues compared to the young ones. Moreover, histological, immunohistochemical and ultrastructural assessments of old and young lung tissue were also conducted. RESULTS: Our results showed that the expression levels of cathepsins G and X were notably higher in old rat lung tissues in contrast to those in young rat lung tissues. Zymography analysis revealed elevated MMP activity in the old lung tissues compared to the young ones. Particularly, significant degradation of fibronectin, an essential ECM component, was observed in the old lung tissues. Numerous histological and ultrastructural alterations were observed in old lung tissues compared to young lung tissues. DISCUSSION AND CONCLUSION: The findings indicate an age-related upregulation of cathepsins G and X along with heightened MMP activity in old rat lung tissues, potentially contributing to the degradation of fibronectin within the ECM. These alterations highlight potential mechanisms underlying age-associated changes in lung tissue integrity and provide insights into protease-mediated ECM remodeling in the context of aging lungs.
- MeSH
- extracelulární matrix metabolismus ultrastruktura MeSH
- fibronektiny * metabolismus MeSH
- kathepsin G metabolismus MeSH
- krysa rodu Rattus MeSH
- lyzozomy ultrastruktura metabolismus MeSH
- matrixové metaloproteinasy metabolismus MeSH
- plíce * ultrastruktura metabolismus MeSH
- proteasy metabolismus MeSH
- stárnutí * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fibronektiny * MeSH
- kathepsin G MeSH
- matrixové metaloproteinasy MeSH
- proteasy MeSH
Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. Here, we devised a single-step decellularization protocol to obtain and thoroughly characterize the biochemical and micro-mechanical properties of the ECM secreted by activated cFbs differentiated from human induced pluripotent stem cells (iPSCs). We activated iPSC-derived cFbs to the myofibroblast phenotype by tuning basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-β1) signalling and confirmed that activated cells acquired key features of myofibroblast phenotype, like SMAD2/3 nuclear shuttling, the formation of aligned alpha-smooth muscle actin (α-SMA)-rich stress fibres and increased focal adhesions (FAs) assembly. Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.
- Klíčová slova
- Cardiac fibrosis modelling, Decellularized extracellular matrix, Induced pluripotent stem cells, iPSC-derived-cardiac fibroblasts, iPSC-derived-cardiomyocytes,
- MeSH
- buněčná diferenciace MeSH
- extracelulární matrix * metabolismus MeSH
- fenotyp * MeSH
- fibróza * MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- kardiomyocyty * metabolismus patologie MeSH
- lidé MeSH
- myofibroblasty patologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Gliomagenesis induces profound changes in the composition of the extracellular matrix (ECM) of the brain. In this study, we identified a cellular population responsible for the increased deposition of collagen I and fibronectin in glioblastoma. Elevated levels of the fibrillar proteins collagen I and fibronectin were associated with the expression of fibroblast activation protein (FAP), which is predominantly found in pericyte-like cells in glioblastoma. FAP+ pericyte-like cells were present in regions rich in collagen I and fibronectin in biopsy material and produced substantially more collagen I and fibronectin in vitro compared to other cell types found in the GBM microenvironment. Using mass spectrometry, we demonstrated that 3D matrices produced by FAP+ pericyte-like cells are rich in collagen I and fibronectin and contain several basement membrane proteins. This expression pattern differed markedly from glioma cells. Finally, we have shown that ECM produced by FAP+ pericyte-like cells enhances the migration of glioma cells including glioma stem-like cells, promotes their adhesion, and activates focal adhesion kinase (FAK) signaling. Taken together, our findings establish FAP+ pericyte-like cells as crucial producers of a complex ECM rich in collagen I and fibronectin, facilitating the dissemination of glioma cells through FAK activation.
- Klíčová slova
- collagen type I, extracellular matrix proteins, fibronectin, glioblastoma, pericytes, proteomics,
- MeSH
- endopeptidasy MeSH
- extracelulární matrix * metabolismus patologie MeSH
- fibronektiny * metabolismus MeSH
- glioblastom patologie metabolismus MeSH
- gliom * patologie metabolismus MeSH
- kolagen typu I metabolismus MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí fyziologie MeSH
- nádory mozku * patologie metabolismus MeSH
- pericyty * metabolismus patologie MeSH
- pohyb buněk fyziologie MeSH
- serinové endopeptidasy metabolismus MeSH
- želatinasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endopeptidasy MeSH
- fibroblast activation protein alpha MeSH Prohlížeč
- fibronektiny * MeSH
- kolagen typu I MeSH
- membránové proteiny MeSH
- serinové endopeptidasy MeSH
- želatinasy MeSH
Fibrotic changes in pediatric clubfoot provide an opportunity to improve corrective therapy and prevent relapses with targeted drugs. This study defines the parameters of clubfoot fibrosis and presents a unique analysis of a simple pseudo-3D in vitro model for disease-specific high-throughput drug screening experiments. The model combines clubfoot-derived fibroblasts with a biomimetic cultivation environment induced by the water-soluble polymers Ficoll and Polyvinylpyrrolidone, utilizing the principle of macromolecular crowding. We achieved higher conversion of soluble collagen into insoluble collagen, accelerated formation of the extracellular matrix layer and upregulated fibrosis-related genes in the mixed Ficoll environment. To test the model, we evaluated the effect of a potential antifibrotic drug, minoxidil, emphasizing collagen content and cross-linking. While the model amplified overall collagen deposition, minoxidil effectively blocked the expression of lysyl hydroxylases, which are responsible for the increased occurrence of specific collagen cross-linking in various fibrotic tissues. This limited the formation of collagen cross-link in both the model and control environments. Our findings provide a tool for expanding preclinical research for clubfoot and similar fibroproliferative conditions.
- MeSH
- biomimetika metody MeSH
- extracelulární matrix metabolismus účinky léků MeSH
- fibroblasty * metabolismus účinky léků MeSH
- fibróza * farmakoterapie MeSH
- kolagen * metabolismus chemie MeSH
- kultivované buňky MeSH
- lidé MeSH
- pes equinovarus * metabolismus farmakoterapie patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kolagen * MeSH