Most cited article - PubMed ID 10525420
Adaptation to high altitude hypoxia protects the rat heart against ischemia-induced arrhythmias. Involvement of mitochondrial K(ATP) channel
In 2023, six decades have elapsed since the first experimental work on the heart muscle was published, in which a member of the Institute of Physiology of the Czech Academy of Sciences participated as an author; Professor Otakar Poupa was the founder and protagonist of this research domain. Sixty years - more than half of the century - is certainly significant enough anniversary that is worth looking back and reflecting on what was achieved during sometimes very complicated periods of life. It represents the history of an entire generation of experimental cardiologists; it is possible to learn from its successes and mistakes. The objective of this review is to succinctly illuminate the scientific trajectory of an experimental cardiological department over a 60-year span, from its inaugural publication to the present. The old truth - historia magistra vitae - is still valid. Keywords: Heart, Adaptation, Development, Hypoxia, Protection.
- MeSH
- Academies and Institutes * history MeSH
- Biomedical Research * history trends MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Physiology history MeSH
- Cardiology history trends MeSH
- Humans MeSH
- Heart physiology MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
- Geographicals
- Czech Republic MeSH
Remodeling of the cellular distribution of gap junctions formed mainly by connexin-43 (Cx43) can be related to the increased incidence of cardiac arrhythmias. It has been shown that adaptation to chronic intermittent hypobaric hypoxia (IHH) attenuates the incidence and severity of ischemic and reperfusion ventricular arrhythmias and increases the proportion of anti-arrhythmic n-3 polyunsaturated fatty acids (n-3 PUFA) in heart phospholipids. Wistar rats were exposed to simulated IHH (7,000 m, 8-h/day, 35 exposures) and compared with normoxic controls (N). Cx43 expression, phosphorylation, localization and n-3 PUFA proportion were analyzed in left ventricular myocardium. Compared to N, IHH led to higher expression of total Cx43, its variant phosphorylated at Ser368 [p-Cx43(Ser368)], which maintains "end to end" communication, as well as p-Cx43(Ser364/365), which facilitates conductivity. By contrast, expression of non-phosphorylated Cx43 and p-Cx43(Ser278/289), attenuating intercellular communication, was lower in IHH than in N. IHH also resulted in increased expression of protein kinase A and protein kinase G while casein kinase 1 did not change compared to N. In IHH group, which exhibited reduced incidence of ischemic ventricular arrhythmias, Cx43 and p-Cx43(Ser368) were more abundant at "end to end" gap junctions than in N group and this difference was preserved after acute regional ischemia (10 min). We further confirmed higher n-3 PUFA proportion in heart phospholipids after adaptation to IHH, which was even further increased by ischemia. Our results suggest that adaptation to IHH alters expression, phosphorylation and distribution of Cx43 as well as cardioprotective n-3PUFA proportion suggesting that the anti-arrhythmic phenotype elicited by IHH can be at least partly related to the stabilization of the "end to end" conductivity between cardiomyocytes during brief ischemia.
- Keywords
- arrhythmia, brief ischemia, chronic hypoxia, connexin-43, heart, n-3 PUFA,
- Publication type
- Journal Article MeSH
Cardiac resistance against acute ischemia/reperfusion (I/R) injury can be enhanced by adaptation to chronic intermittent hypoxia (CIH), but the changes at the molecular level associated with this adaptation are still not fully explored. Phospholipase A2 (PLA2) plays an important role in phospholipid metabolism and may contribute to membrane destruction under conditions of energy deprivation during I/R. The aim of this study was to determine the effect of CIH (7000 m, 8 h/day, 5 weeks) on the expression of cytosolic PLA2α (cPLA2α) and its phosphorylated form (p-cPLA2α), as well as other related signaling proteins in the left ventricular myocardium of adult male Wistar rats. Adaptation to CIH increased the total content of cPLA2α by 14 % in myocardial homogenate, and enhanced the association of p-cPLA2α with the nuclear membrane by 85 %. The total number of β-adrenoceptors (β-ARs) did not change but the β2/β1 ratio markedly increased due to the elevation of β2-ARs and drop in β1-ARs. In parallel, the amount of adenylyl cyclase decreased by 49 % and Giα proteins increased by about 50 %. Besides that, cyclooxygenase 2 (COX-2) and prostaglandin E2 (PGE2) increased by 36 and 84 %, respectively. In parallel, we detected increased phosphorylation of protein kinase Cα, ERK1/2 and p38 (by 12, 48 and 19 %, respectively). These data suggest that adaptive changes induced in the myocardium by CIH may include activation of cPLA2α and COX-2 via β2-AR/Gi-mediated stimulation of the ERK/p38 pathway.
- Keywords
- Cyclooxygenase 2, Heart, Hypoxia, Ischemia/reperfusion, MAPK, Phospholipase A2, β-Adrenoceptor,
- MeSH
- Receptors, Adrenergic, beta-2 metabolism MeSH
- Chronic Disease MeSH
- Cyclooxygenase 2 metabolism MeSH
- Group IV Phospholipases A2 metabolism MeSH
- Myocardial Ischemia metabolism pathology MeSH
- Rats MeSH
- MAP Kinase Signaling System * MeSH
- p38 Mitogen-Activated Protein Kinases metabolism MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Receptors, Adrenergic, beta-2 MeSH
- Cyclooxygenase 2 MeSH
- Group IV Phospholipases A2 MeSH
- p38 Mitogen-Activated Protein Kinases MeSH
- Ptgs2 protein, rat MeSH Browser
Chronic hypoxia protects the heart against injury caused by acute oxygen deprivation, but its salutary mechanism is poorly understood. The aim was to find out whether cardiomyocytes isolated from chronically hypoxic hearts retain the improved resistance to injury and whether the mitochondrial large-conductance Ca2+-activated K+ (BKCa) channels contribute to the protective effect. Adult male rats were adapted to continuous normobaric hypoxia (inspired O2 fraction 0.10) for 3 wk or kept at room air (normoxic controls). Myocytes, isolated separately from the left ventricle (LVM), septum (SEPM), and right ventricle, were exposed to 25-min metabolic inhibition with sodium cyanide, followed by 30-min reenergization (MI/R). Some LVM were treated with either 30 μM NS-1619 (BKCa opener), or 2 μM paxilline (BKCa blocker), starting 25 min before metabolic inhibition. Cell injury was detected by Trypan blue exclusion and lactate dehydrogenase (LDH) release. Chronic hypoxia doubled the number of rod-shaped LVM and SEPM surviving the MI/R insult and reduced LDH release. While NS-1619 protected cells from normoxic rats, it had no additive salutary effect in the hypoxic group. Paxilline attenuated the improved resistance of cells from hypoxic animals without affecting normoxic controls; it also abolished the protective effect of NS-1619 on LDH release in the normoxic group. While chronic hypoxia did not affect protein abundance of the BKCa channel regulatory β1-subunit, it markedly decreased its glycosylation level. It is concluded that ventricular myocytes isolated from chronically hypoxic rats retain the improved resistance against injury caused by MI/R. Activation of the mitochondrial BKCa channel likely contributes to this protective effect.
- MeSH
- Benzimidazoles pharmacology MeSH
- Potassium Channel Blockers pharmacology MeSH
- Chronic Disease MeSH
- Glycosylation MeSH
- Hypoxia physiopathology MeSH
- Indoles pharmacology MeSH
- Ischemic Preconditioning, Myocardial MeSH
- Myocytes, Cardiac drug effects physiology MeSH
- Rats MeSH
- Cells, Cultured MeSH
- L-Lactate Dehydrogenase metabolism MeSH
- Rats, Wistar MeSH
- Myocardial Reperfusion Injury physiopathology prevention & control MeSH
- Cell Separation MeSH
- Mitochondria, Heart drug effects physiology MeSH
- Large-Conductance Calcium-Activated Potassium Channel beta Subunits physiology MeSH
- Large-Conductance Calcium-Activated Potassium Channels antagonists & inhibitors physiology MeSH
- Cell Survival MeSH
- Blotting, Western MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Benzimidazoles MeSH
- Potassium Channel Blockers MeSH
- Indoles MeSH
- L-Lactate Dehydrogenase MeSH
- NS 1619 MeSH Browser
- paxilline MeSH Browser
- Large-Conductance Calcium-Activated Potassium Channel beta Subunits MeSH
- Large-Conductance Calcium-Activated Potassium Channels MeSH
Adult male Wistar rats were exposed to intermittent high altitude hypoxia of 7000 m simulated in a hypobaric chamber for 8 h/day, 5 days a week; the total number of exposures was 25. The concentration of individual phospholipids and their fatty acid (FA) profile was determined in right (RV) and left (LV) ventricles. Adaptation to hypoxia decreased the concentration of diphosphatidytglycerol (DPG) in hypertrophied RV by 19% and in non-hypertrophied LV by 12% in comparison with normoxic controls. Chronically hypoxic hearts exhibited lower phospholipid n-6 polyunsaturated FA(PUFA) content mainly due to decreased linoleic acid (18:2n-6), which was opposed by increased n-3 PUFA mainly due to docosahexaenoic acid (22:6n-3) in phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI). The content of arachidonic acid (20:4n-6) was unchanged in total phospholipids, but in PC it was increased in both ventricles (by 22%) and in PE decreased in LV only (by 20%). Chronic hypoxia increased the un-saturation index of PC and PE in both ventricles. The content of monounsaturated FA (MUFA) was increased and 18:2n-6 decreased in DPG. The proportion of saturated FA was increased in PC and PI of hypoxic RV but not LV. The FA composition of phosphatidylserine was not altered in hypoxic ventricles. It is concluded that chronic hypoxia led to only minor changes in individual phospholipid concentration in rat ventricular myocardium, but markedly altered their FA profile. These changes, in particular the greater incorporation of n-3 PUFA into phospholipids and increased un-saturation index, may lead to a better preservation of membrane integrity and thereby contribute to improved ischemic tolerance of chronically hypoxic hearts.
- MeSH
- Chronic Disease MeSH
- Phospholipids chemistry metabolism MeSH
- Adaptation, Physiological MeSH
- Hypoxia physiopathology MeSH
- Rats MeSH
- Fatty Acids analysis metabolism MeSH
- Rats, Wistar MeSH
- Heart Ventricles chemistry metabolism MeSH
- Body Weight MeSH
- Organ Size MeSH
- Altitude Sickness physiopathology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Phospholipids MeSH
- Fatty Acids MeSH