Most cited article - PubMed ID 10642565
Butyrolactone I reversibly inhibits meiotic maturation of bovine oocytes,Without influencing chromosome condensation activity
In vitro cultivation systems for oocytes and embryos are characterised by increased levels of reactive oxygen species (ROS), which can be balanced by the addition of suitable antioxidants. S-allyl cysteine (SAC) is a sulfur compound naturally occurring in garlic (Allium sativum), which is responsible for its high antioxidant properties. In this study, we demonstrated the capacity of SAC (0.1, 0.5 and 1.0 mM) to reduce levels of ROS in maturing oocytes significantly after 24 (reduced by 90.33, 82.87 and 91.62%, respectively) and 48 h (reduced by 86.35, 94.42 and 99.05%, respectively) cultivation, without leading to a disturbance of the standard course of meiotic maturation. Oocytes matured in the presence of SAC furthermore maintained reduced levels of ROS even 22 h after parthenogenic activation (reduced by 66.33, 61.64 and 57.80%, respectively). In these oocytes we also demonstrated a growth of early embryo cleavage rate (increased by 33.34, 35.00 and 35.00%, respectively). SAC may be a valuable supplement to cultivation media.
- Keywords
- Antioxidant, Garlic, Oocyte, Pigs, S-allyl cysteine,
- Publication type
- Journal Article MeSH
Hydrogen sulfide (H2S) has been revealed to be a signal molecule with second messenger action in the somatic cells of many tissues, including the reproductive tract. The aim of this study was to address how exogenous H2S acts on the meiotic maturation of porcine oocytes, including key maturation factors such as MPF and MAPK, and cumulus expansion intensity of cumulus-oocyte complexes. We observed that the H2S donor, Na2S, accelerated oocyte in vitro maturation in a dose-dependent manner, following an increase of MPF activity around germinal vesicle breakdown. Concurrently, the H2S donor affected cumulus expansion, monitored by hyaluronic acid production. Our results suggest that the H2S donor influences oocyte maturation and thus also participates in the regulation of cumulus expansion. The exogenous H2S donor apparently affects key signal pathways of oocyte maturation and cumulus expansion, resulting in faster oocyte maturation with little need of cumulus expansion.
- MeSH
- Extracellular Signal-Regulated MAP Kinases metabolism MeSH
- Maturation-Promoting Factor metabolism MeSH
- Gasotransmitters pharmacology MeSH
- Coculture Techniques MeSH
- Cells, Cultured MeSH
- Cumulus Cells cytology metabolism MeSH
- Meiosis drug effects MeSH
- Oocytes cytology metabolism MeSH
- Swine MeSH
- Hydrogen Sulfide pharmacology MeSH
- Sulfides pharmacology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Extracellular Signal-Regulated MAP Kinases MeSH
- Maturation-Promoting Factor MeSH
- Gasotransmitters MeSH
- sodium sulfide MeSH Browser
- Hydrogen Sulfide MeSH
- Sulfides MeSH