Nejvíce citovaný článek - PubMed ID 10762325
Molecular and functional properties of synaptically activated NMDA receptors in neonatal motoneurons in rat spinal cord slices
NMDA receptors are ligand-gated ion channels permeable to calcium and play a critical role in excitatory synaptic transmission, synaptic plasticity, and excitotoxicity. They are heteromeric complexes of NR1 combined with NR2A-D and/or NR3A-B subunits that are activated by glutamate and glycine and whose activity is modulated by allosteric modulators. In this study, patch-clamp recordings from human embryonic kidney 293 cells expressing NR1/NR2 receptors were used to study the molecular mechanism of the endogenous neurosteroid 20-oxo-5beta-pregnan-3alpha-yl sulfate (3alpha5betaS) action at NMDA receptors. 3alpha5betaS was a twofold more potent inhibitor of responses mediated by NR1/NR2C-D receptors than those mediated by NR1/NR2A-B receptors. The structure of the extracellular loop between the third and fourth transmembrane domains of the NR2 subunit was found to be critical for the neurosteroid inhibitory effect. The degree of 3alpha5betaS-induced inhibition of responses to glutamate was voltage independent, with recovery lasting several seconds. In contrast, application of 3alpha5betaS in the absence of agonist had no effect on the subsequent response to glutamate made in the absence of the neurosteroid. A kinetic model was developed to explain the use-dependent action of 3alpha5betaS at NMDA receptors. In accordance with the model, 3alpha5betaS was a less potent inhibitor of NMDA receptor-mediated EPSCs and responses induced by a short application of 1 mm glutamate than of those induced by a long application of glutamate. These results suggest that 3alpha5betaS is a use-dependent but voltage-independent inhibitor of NMDA receptors, with more potent action at tonically than at phasically activated receptors. This may be important in the treatment of excitotoxicity-induced neurodegeneration.
- MeSH
- buněčné linie MeSH
- hipokampus cytologie fyziologie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- membránové potenciály účinky léků fyziologie MeSH
- metoda terčíkového zámku MeSH
- modely neurologické MeSH
- neokortex fyziologie MeSH
- novorozená zvířata MeSH
- pregnany farmakologie MeSH
- receptory N-methyl-D-aspartátu antagonisté a inhibitory MeSH
- techniky in vitro MeSH
- transfekce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 20-oxo-5beta-pregnan-3alpha-yl sulfate MeSH Prohlížeč
- pregnany MeSH
- receptory N-methyl-D-aspartátu MeSH
Properties of N-methyl-D-aspartate (NMDA) receptor channels were studied using the patch-clamp technique in fluorescence-labelled control and axotomised motoneurons in thin spinal cord slices. Single-channel currents induced by NMDA in outside-out patches isolated from axotomised motoneurons and voltage clamped at -100 mV, exhibited six amplitude levels with a mean conductance of 14.9 +/- 1.9, 22.2 +/- 2.7, 35.6 +/- 4.4, 49.1 +/- 3.5, 59.6 +/- 3.5 and 69.0 +/- 2.9 pS. In contrast, the conductance of NMDA receptor channels, recorded under identical conditions in control motoneurons was characterised by only four levels corresponding to 20.1 +/- 2.5, 38.0 +/- 3.0, 58.6 +/- 3.4 and 71.5 +/- 2.6 pS. The time course of deactivation of NMDA receptor EPSCs in axotomised motoneurons voltage clamped at +40 mV was double exponential. The deactivation had a similar time course in control and axotomised motoneurons from 6-day-old animals; however, the deactivation became faster with increased time after injury. The fast and slow time constants in motoneurons 8 days after axotomy became three times faster than in controls. NMDA receptor-mediated responses were voltage dependent in the presence of extracellular Mg(2+). In axotomised motoneurons Boltzmann analysis of the relationship between the peak amplitude of NMDA receptor EPSCs or NMDA-induced responses and membrane potential suggested an apparent K(d) for Mg(2+) binding (at 0 mV) of 1.2 +/- 0.5 and 3.4 +/- 3.9 mM, respectively. Single-cell RT-PCR analysis of mRNA revealed that NR2A-D and NR3A subunit transcripts were expressed in axotomised motoneurons. The results of our experiments suggest that in addition to genotypic control of NMDA receptors in motoneurons, axotomy, an experimental model of neurodegeneration, alters functional properties of the receptors in motoneurons destined to die.
- MeSH
- axotomie * MeSH
- elektrická vodivost MeSH
- excitační postsynaptické potenciály fyziologie MeSH
- hořčík farmakologie MeSH
- iontové kanály antagonisté a inhibitory fyziologie MeSH
- krysa rodu Rattus MeSH
- messenger RNA metabolismus MeSH
- mícha cytologie metabolismus MeSH
- motorické neurony metabolismus MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- reakční čas fyziologie MeSH
- receptory N-methyl-D-aspartátu genetika metabolismus MeSH
- techniky in vitro MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hořčík MeSH
- iontové kanály MeSH
- messenger RNA MeSH
- receptory N-methyl-D-aspartátu MeSH