Nejvíce citovaný článek - PubMed ID 11018944
The double differential cross sections of the Drell-Yan lepton pair (ℓ+ℓ-, dielectron or dimuon) production are measured as functions of the invariant mass mℓℓ, transverse momentum pT(ℓℓ), and φη∗. The φη∗ observable, derived from angular measurements of the leptons and highly correlated with pT(ℓℓ), is used to probe the low-pT(ℓℓ) region in a complementary way. Dilepton masses up to 1TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various mℓℓ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3fb-1 of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.
- Publikační typ
- časopisecké články MeSH
Distributions of transverse momentum [Formula: see text] and the related angular variable [Formula: see text] of Drell–Yan lepton pairs are measured in 20.3 fb[Formula: see text] of proton–proton collisions at [Formula: see text] TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in proton–proton collisions at [Formula: see text] TeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of [Formula: see text] the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of [Formula: see text] this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of [Formula: see text] while the fixed-order prediction of Dynnlo falls below the data at high values of [Formula: see text]. ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the [Formula: see text] and [Formula: see text] distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.
- Publikační typ
- časopisecké články MeSH