Nejvíce citovaný článek - PubMed ID 11113342
Alzheimer's disease (AD) is one of the most serious human, medical, and socioeconomic burdens. Here we tested the hypothesis that a rat model of AD (Samaritan; Taconic Pharmaceuticals, USA) based on the application of amyloid beta42 (Abeta42) and the pro-oxidative substances ferrous sulfate heptahydrate and L-buthionine-(S, R)-sulfoximine, will exhibit cognitive deficits and disruption of the glutamatergic and cholinergic systems in the brain. Behavioral methods included the Morris water maze (MWM; long-term memory version) and the active allothetic place avoidance (AAPA) task (acquisition and reversal), testing spatial memory and different aspects of hippocampal function. Neurochemical methods included testing of the NR1/NR2A/NR2B subunits of NMDA receptors in the frontal cortex and CHT1 transporters in the hippocampus, in both cases in the right and left hemisphere separately. Our results show that Samaritan rats(™) exhibit marked impairment in both the MWM and active place avoidance tasks, suggesting a deficit of spatial learning and memory. Moreover, Samaritan rats exhibited significant changes in NR2A expression and CHT1 activity compared to controls rats, mimicking the situation in patients with early stage AD. Taken together, our results corroborate the hypothesis that Samaritan rats are a promising model of AD in its early stages.
- Klíčová slova
- Alzheimer’s disease, animal model, cognition, hippocampus, learning and memory, neurochemistry of the acetylcholine system, sporadic AD,
- Publikační typ
- časopisecké články MeSH
Studies suggest age- and sex-dependent structural and functional patterns of human cerebral lateralization underlie hemisphere specialization and its alterations in schizophrenia. Recent works report sexual dimorphism of neurons in the hippocampal formation and specialization of hemispheres in rats. Our experiments indicate for the first time functional lateralization of the high-affinity choline uptake (HACU) system directly associated with a synthesis of acetylcholine in the hippocampus of Wistar rats. The markedly increased HACU activity was found in the left compared to the right hippocampus of adult male but not female animals. Lineweaver-Burk plot analysis revealed a statistically significant increase of Vmax in the left hippocampus of 14-day-old when compared to 7-day-old males. It appears that laterality of HACU occurs during late postnatal maturation, and its degree is markedly enhanced after puberty and attenuated during aging. Quinolinic acid (QUIN), an endogenous agonist of N-methyl-D-aspartate type glutamate receptors, was used in this study to evaluate the neurodevelopmental hypothesis of schizophrenia. It is known that elevated levels of QUIN accompany viral infections, increasing the risk of developing schizophrenia. Bilateral intracerebroventricular application of QUIN (250 nmoles/ventricle) to pups aged 12 days significantly impaired the cholinergic hippocampal system of adolescent male and female rats and reversed lateralization of male HACU. Morphological analysis indicated marked changes in brain lesion sizes (extensive 24 h and moderate 38 days after the operation). Asymmetry of lesions was observed in the majority of cases, but the left hemisphere was not generally more vulnerable to QUIN effects than the right side. Moreover, no lateral differences were found between lesioned hippocampi in the specific binding of [3H]hemicholinium-3 (10%-15% loss of binding sites when compared to sham-operated animals). In summary, our results indicate a symmetrical drop in the number of choline carriers of lesioned male rats but a asymmetrical decrease in the activity of remaing carriers, suggesting defects in processes of sexual brain differentiation, leading under normal conditions to the higher activity of carriers in the left hippocampus. The data demonstrate viral infection-mediated alterations in normal patterns of brain asymmetry and are discussed in relation to animal models of neurodevelopmental and neurodegenerative diseases.
- MeSH
- funkční lateralita * MeSH
- hipokampus patofyziologie MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech * MeSH
- neurodegenerativní nemoci patofyziologie MeSH
- potkani Wistar MeSH
- receptory cholinergní fyziologie MeSH
- sexuální faktory MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptory cholinergní MeSH