Nejvíce citovaný článek - PubMed ID 11209885
Organisms have evolved different defense mechanisms, such as crypsis and mimicry, to avoid detection and recognition by predators. A prominent example is Batesian mimicry, where palatable species mimic unpalatable or toxic ones, such as Clytini (Coleoptera: Cerambycidae) that mimic wasps. However, scientific evidence for the effectiveness of Batesian mimicry in Cerambycids in natural habitats is scarce. We investigated predation of warningly and nonwarningly colored Cerambycids by birds in a temperate forest using beetle dummies. Dummies mimicking Tetropium castaneum, Leptura aethiops, Clytus arietis, and Leptura quadrifasciata were exposed on standing and laying deadwood and monitored predation events by birds over one season. The 20 surveyed plots differed in their structural complexity and canopy openness due to different postdisturbance logging strategies. A total of 88 predation events on warningly colored beetle dummies and 89 predation events on nonwarningly colored beetle dummies did not reveal the difference in predation risk by birds. However, predation risk increased with canopy openness, bird abundance, and exposure time, which peaked in July. This suggests that environmental factors have a higher importance in determining predation risk of warningly and nonwarningly colored Cerambycidae than the actual coloration of the beetles. Our study showed that canopy openness might be important in determining the predation risk of beetles by birds regardless of beetles' warning coloration. Different forest management strategies that often modify canopy openness may thus alter predator-prey interactions.
- Klíčová slova
- Batesian mimicry, beetle dummies, management intensification, natural disturbance,
- MeSH
- brouci * MeSH
- ekosystém MeSH
- lesy MeSH
- predátorské chování MeSH
- ptáci MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Growing evidence exists that aposematic and toxic prey may be included in a predator's diet when the predator experiences physiological stress. The tree sparrow Passer montanus is known to have a significant portion of aposematic and toxic ladybirds in its natural diet. Here, we present experiments testing the attack and eating rate of the tree sparrow toward the invasive aposematic harlequin ladybird Harmonia axyridis. We wondered whether the sparrow's ability to prey on native ladybirds predisposes them to also prey on harlequin ladybirds. We compared the attack and eating rates of tree sparrows of particular age and/or experience classes to test for any changes during ontogeny (hand-reared × young wild-caught ×adult wild-caught) and with differing perceived levels of physiological stress (summer adult × winter adult). Winter adult tree sparrows commonly attacked and ate the offered ladybirds with no evidence of disgust or metabolic difficulties after ingestion. Naïve and wild immature tree sparrows attacked the ladybirds but hesitated to eat them. Adult tree sparrows caught in the summer avoided attacking the ladybirds. These results suggest that tree sparrows are able to cope with chemicals ingested along with the ladybirds. This pre-adaptation enables them to include ladybirds in their diet; though they commonly do this only in times of shortage in insect availability (winter). Young sparrows showed avoidance toward the chemical protection of the ladybirds.
- Klíčová slova
- chemical protection, toxic prey predation, visual signal, warning signal,
- Publikační typ
- časopisecké články MeSH