Most cited article - PubMed ID 11232863
Cytotoxic effects of colicins E1 and E3 on v-myb-transformed chicken monoblasts
BACKGROUND: Optimal therapy for colorectal carcinoma (CRC), a frequently diagnosed malignancy, does not exist. Some of colicins and microcins, ribosomally synthesized peptides by gramnegative bacteria, have shown significant biological activity specifically against different cancer cells in vitro and in vivo conditions. The aim of this prospective study was to evaluate natural colicin and microcin production by large intestinal mucosal bacteria in each stage of colorectal neoplasia and in those with a history of colorectal neoplasia. METHODS: A total of 21 patients with non-advanced adenoma (non-a-A; 16/21 with current and 5/21 with history of non-a-A), 20 patients with advanced colorectal adenoma (a-A; 11/20 with current and 9/20 with history of a-A), 22 individuals with CRC (9/22 with current and 13/22 with history of CRC) and 20 controls were enrolled. Mucosal biopsies from the caecum, transverse colon and the rectum were taken during colonoscopy in each individual. Microbiological culture followed. Production of colicins and microcins was evaluated by PCR methods. RESULTS: A total of 239 mucosal biopsies were taken. Production of colicins and microcins was significantly more frequent in individuals with non-a-A, a-A and CRC compared to controls. No significant difference in colicin and microcin production was found between patients with current and previous non-a-A, a-A and CRC. Significantly more frequent production of colicins was observed in men compared to women at the stage of colorectal carcinoma. A later onset of increased production of microcins during the adenoma-carcinoma sequence has been observed in males compared to females. CONCLUSIONS: Strains isolated from large intestinal mucosa in patients with colorectal neoplasia produce colicins and microcins more frequently compared to controls. Bacteriocin production does not differ between patients with current and previous colorectal neoplasia. Fundamental differences in bacteriocin production have been confirmed between males and females.
- Keywords
- Colicin, Colorectal carcinoma, Colorectal neoplasia, Gramnegative bacteria, Microcin,
- MeSH
- Bacteria metabolism MeSH
- Bacteriocins biosynthesis MeSH
- Biopsy MeSH
- Colorectal Neoplasms pathology MeSH
- Humans MeSH
- Gastrointestinal Microbiome * MeSH
- Intestinal Mucosa metabolism microbiology MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacteriocins MeSH
AIM: To evaluate bacteriocinogeny in short-term high-dose indomethacin administration with or without probiotic Escherichia coli Nissle 1917 (EcN) in experimental pigs. METHODS: Twenty-four pigs entered the study: Group A (controls), Group B (probiotics alone), Group C (indomethacin alone) and Group D (probiotics and indomethacin). EcN (3.5×10(10) bacteria/d for 14 d) and/or indomethacin (15 mg/kg per day for 10 d) were administrated orally. Anal smears before and smears from the small and large intestine were taken from all animals. Bacteriocin production was determined with 6 different indicator strains; all strains were polymerase chain reaction tested for the presence of 29 individual bacteriocin-encoding determinants. RESULTS: The general microbiota profile was rather uniform in all animals but there was a broad diversity in coliform bacteria (parallel genotypes A, B1, B2 and D found). In total, 637 bacterial strains were tested, mostly Escherichia coli (E. coli). There was a higher incidence of non-E. coli strains among samples taken from the jejunum and ileum compared to that of the colon and rectum indicating predominance of E. coli strains in the large intestine. Bacteriocinogeny was found in 24/77 (31%) before and in 155/560 (28%) isolated bacteria at the end of the study. Altogether, 13 individual bacteriocin types (out of 29 tested) were identified among investigated strains. Incidence of four E. coli genotypes was equally distributed in all groups of E. coli strains, with majority of genotype A (ranging from 81% to 88%). The following types of bacteriocins were most commonly revealed: colicins Ia/Ib (44%), microcin V (18%), colicin E1 (16%) and microcin H47 (6%). There was a difference in bacteriocinogeny between control group A (52/149, 35%) and groups with treatment at the end of the study: B: 31/122 (25%, P=0.120); C: 43/155 (28%, P=0.222); D: 29/134 (22%, P=0.020). There was a significantly lower prevalence of colicin Ib, microcins H47 and V (probiotics group, P<0.001), colicin E1 and microcin H47 (indomethacin group, P<0.001) and microcins H47 and V (probiotics and indomethacin group, P=0.025) compared to controls. Escherichia fergusonii (E. fergusonii) was identified in 6 animals (6/11 isolates from the rectum). One strain was non-colicinogenic, while all other strains of E. fergusonii solely produced colicin E1. All animals started and remained methanogenic despite the fact that EcN is a substantial hydrogen producer. There was an increase in breath methane (after the treatment) in 5/6 pigs from the indomethacin group (C). CONCLUSION: EcN did not exert long-term liveability in the porcine intestine. All experimental pigs remained methanogenic. Indomethacin and EcN administered together might produce the worst impact on bacteriocinogeny.
- Keywords
- Bacteriocinogeny, Escherichia coli Nissle 1917, Experimental pigs, Indomethacin,
- MeSH
- Anti-Inflammatory Agents, Non-Steroidal adverse effects pharmacology MeSH
- Bacteriocins metabolism MeSH
- Breath Tests MeSH
- Escherichia coli metabolism MeSH
- Indomethacin adverse effects pharmacology MeSH
- Humans MeSH
- Metagenome MeSH
- Methane metabolism MeSH
- Probiotics pharmacology MeSH
- Intestinal Mucosa drug effects microbiology MeSH
- Sus scrofa MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Inflammatory Agents, Non-Steroidal MeSH
- Bacteriocins MeSH
- Indomethacin MeSH
- Methane MeSH
The activity in vitro of four types of colicins (A, E1, E3, U) against one human standard fibroblast line and against 11 human tumor-cell lines carrying defined mutations of the p53 gene was quantified by MTT (tetrazolium bromide) assay. Flow cytometry showed that the pore-forming colicins A, E1 and U affected the cell cycle of 5 of these cell lines. Colicins E3 and U did not show any distinct inhibitory effects on the cell lines, while colicins E1 and especially A inhibited the growth of all of them (with one exception concerning colicin E1). Colicin E1 inhibited the growth of the tumor lines by 17-40% and standard fibroblasts MRC5 by 11%. Colicin A exhibited a differentiated 16-56% inhibition, the growth of standard fibroblasts being inhibited by 36%. In three of the lines, colicins A and E1 increased the number of cells in the G1 phase (by 12-58%) and in apoptosis (by 7-58%). These results correlated with the data from sensitivity assays. Hence, the inhibitory effect of colicins on eukaryotic cells in cell-selective, colicin-specific and can be considered to be cytotoxic.
- MeSH
- Cell Cycle drug effects MeSH
- Eukaryotic Cells drug effects MeSH
- Fibroblasts drug effects MeSH
- G1 Phase drug effects MeSH
- Colicins pharmacology MeSH
- Humans MeSH
- Mutation MeSH
- Tumor Cells, Cultured drug effects MeSH
- Tumor Suppressor Protein p53 genetics MeSH
- Tetrazolium Salts metabolism MeSH
- Thiazoles metabolism MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Colicins MeSH
- Tumor Suppressor Protein p53 MeSH
- Tetrazolium Salts MeSH
- Thiazoles MeSH
- thiazolyl blue MeSH Browser