Most cited article - PubMed ID 11322888
Secreted aspartic proteases of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaniae. Inhibition with peptidomimetic inhibitors
Pathogenic Candida albicans yeasts frequently cause infections in hospitals. Antifungal drugs lose effectiveness due to other Candida species and resistance. New medications are thus required. Secreted aspartic protease of C. parapsilosis (Sapp1p) is a promising target. We have thus solved the crystal structures of Sapp1p complexed to four peptidomimetic inhibitors. Three potent inhibitors (Ki: 0.1, 0.4, 6.6 nM) resembled pepstatin A (Ki: 0.3 nM), a general aspartic protease inhibitor, in terms of their interactions with Sapp1p. However, the weaker inhibitor (Ki: 14.6 nM) formed fewer nonpolar contacts with Sapp1p, similarly to the smaller HIV protease inhibitor ritonavir (Ki: 1.9 µM), which, moreover, formed fewer H-bonds. The analyses have revealed the structural determinants of the subnanomolar inhibition of C. parapsilosis aspartic protease. Because of the high similarity between Saps from different Candida species, these results can further be used for the design of potent and specific Sap inhibitor-based antimycotic drugs.
- Keywords
- Inhibitor, crystal structure, hydrogen bonds, noncovalent interactions, peptidomimetics,
- MeSH
- Aspartic Acid Endopeptidases antagonists & inhibitors metabolism MeSH
- Candida parapsilosis enzymology MeSH
- Fungal Proteins antagonists & inhibitors metabolism MeSH
- Protease Inhibitors chemical synthesis chemistry pharmacology MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Peptidomimetics chemical synthesis chemistry pharmacology MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aspartic Acid Endopeptidases MeSH
- Fungal Proteins MeSH
- Protease Inhibitors MeSH
- Peptidomimetics MeSH
- SAPP1 protein, Candida parapsilosis MeSH Browser
Pathogenic yeasts of the genus Candida produce secreted aspartic proteinases, which are known to enhance virulence. We focused on Sapp1p proteinase secreted by Candida parapsilosis and studied the final stage of its passage through the cell wall and release into the extracellular environment. We found that Sapp1p displays enzyme activity prior to secretion, and therefore, it is probably fully folded within the upper layer of the cell wall. The positioning of cell surface-associated Sapp1p was detected by cell wall protein labeling using biotinylation agents, extraction of cell wall proteins by β-mercaptoethanol, immunochemical detection, and mass spectrometry analysis. All lysine residues present in the structure of soluble, purified Sapp1p were labeled with biotin. In contrast, the accessibility of individual lysines in cell wall-associated Sapp1p varied with the exception of four lysine residues that were biotinylated in all experiments performed, suggesting that Sapp1p has a preferred orientation in the cell wall. As the molecular weight of this partially labeled Sapp1p did not differ among the experiments, we can assume that the retaining of Sapp1p in the cell wall is not a totally random process and that pathogenic yeasts might use this cell-associated proteinase activity to enhance degradation of appropriate substrates.
- MeSH
- Aspartic Acid Proteases analysis chemistry metabolism MeSH
- Biotinylation MeSH
- Cell Wall chemistry enzymology MeSH
- Candida chemistry enzymology MeSH
- Models, Molecular MeSH
- Molecular Sequence Data MeSH
- Proteolysis MeSH
- Amino Acid Sequence MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aspartic Acid Proteases MeSH
The yeasts of the genus Candida are opportunistic pathogens associated with the rising incidence of life-threatening infections in immunocompromised individuals. Secretion of aspartic proteinases has been determined to be one of the virulence factors of the pathogenic Candida species. To analyze the extracellular proteolytic activities of a large number of Candida clinical isolates, we developed a screening system based on a solid medium containing hemoglobin as the sole nitrogen source. The cleavage of hemoglobin by the secreted proteinases results in formation of clearance zones. The visibility of such zones was enhanced by addition of an acid-base indicator. Using this system, we assessed 245 clinical isolates of Candida from patients in the hospital of the Faculty of Medicine, Palacky University, Olomouc, Czech Republic, for the presence of secreted aspartic proteases (Saps). We also used the test plates for rapid semiquantitative testing of Sap inhibitors. Most of the pepstatin analogs affected the formation of the zones of clearance as well as the growth of Candida albicans, C. tropicalis, and C. parapsilosis colonies. By contrast, the human immunodeficiency virus proteinase inhibitors saquinavir, ritonavir, nelfinavir, and indinavir had no effect on the Candida strains tested. These results are in agreement with the inhibition constants obtained for the individual inhibitors with purified Saps. Thus, the plates containing hemoglobin proved to be an appropriate tool for the rapid and reliable assessment of Sap production and inhibition.
- MeSH
- Candida enzymology isolation & purification MeSH
- Endopeptidases analysis metabolism MeSH
- Hydrogen-Ion Concentration MeSH
- Culture Media MeSH
- Humans MeSH
- Microbiological Techniques methods MeSH
- Peptide Hydrolases metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Endopeptidases MeSH
- Culture Media MeSH
- Peptide Hydrolases MeSH