Nejvíce citovaný článek - PubMed ID 11498421
The current evidence of cognitive disturbances and brain alterations in schizophrenia does not provide the plausible explanation of the underlying mechanisms. Neuropsychological studies outlined the cognitive profile of patients with schizophrenia, that embodied the substantial disturbances in perceptual and motor processes, spatial functions, verbal and non-verbal memory, processing speed and executive functioning. Standardized scoring in the majority of the neurocognitive tests renders the index scores or the achievement indicating the severity of the cognitive impairment rather than the actual performance by means of errors. At the same time, the quantitative evaluation may lead to the situation when two patients with the same index score of the particular cognitive test, demonstrate qualitatively different performances. This may support the view why test paradigms that habitually incorporate different cognitive variables associate weakly, reflecting an ambiguity in the interpretation of noted cognitive constructs. With minor exceptions, cognitive functions are not attributed to the localized activity but eventuate from the coordinated activity in the generally dispersed brain networks. Functional neuroimaging has progressively explored the connectivity in the brain networks in the absence of the specific task and during the task processing. The spatio-temporal fluctuations of the activity of the brain areas detected in the resting state and being highly reproducible in numerous studies, resemble the activation and communication patterns during the task performance. Relatedly, the activation in the specific brain regions oftentimes is attributed to a number of cognitive processes. Given the complex organization of the cognitive functions, it becomes crucial to designate the roles of the brain networks in relation to the specific cognitive functions. One possible approach is to identify the commonalities of the deficits across the number of cognitive tests or, common errors in the various tests and identify their common "denominators" in the brain networks. The qualitative characterization of cognitive performance might be beneficial in addressing diffuse cognitive alterations presumably caused by the dysconnectivity of the distributed brain networks. Therefore, in the review, we use this approach in the description of standardized tests in the scope of potential errors in patients with schizophrenia with a subsequent reference to the brain networks.
- Klíčová slova
- brain networks, cognitive deficits, cognitive tests, errors, fMRI, lesions, schizophrenia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
We describe an analysis method that characterizes the correlation between coupled time-series functions by their frequencies and phases. It provides a unified framework for simultaneous assessment of frequency and latency of a coupled time-series. The analysis is demonstrated on resting-state functional MRI data of 34 healthy subjects. Interactions between fMRI time-series are represented by cross-correlation (with time-lag) functions. A general linear model is used on the cross-correlation functions to obtain the frequencies and phase-differences of the original time-series. We define symmetric, antisymmetric and asymmetric cross-correlation functions that correspond respectively to in-phase, 90° out-of-phase and any phase difference between a pair of time-series, where the last two were never introduced before. Seed maps of the motor system were calculated to demonstrate the strength and capabilities of the analysis. Unique types of functional connections, their dominant frequencies and phase-differences have been identified. The relation between phase-differences and time-delays is shown. The phase-differences are speculated to inform transfer-time and/or to reflect a difference in the hemodynamic response between regions that are modulated by neurotransmitters concentration. The analysis can be used with any coupled functions in many disciplines including electrophysiology, EEG or MEG in neuroscience.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Contemporary psychiatry is becoming more biologically oriented in the attempt to elicit a biological rationale of mental diseases. Although mental disorders comprise mostly functional abnormalities, there is a substantial overlap between neurology and psychiatry in addressing cognitive disturbances. In schizophrenia, the presence of cognitive impairment prior to the onset of psychosis and early after its manifestation suggests that some neurocognitive abnormalities precede the onset of psychosis and may represent a trait marker. These cognitive alterations may arise from functional disconnectivity, as no significant brain damage has been found. In this review we aim to revise A.R. Luria's systematic approach used in the neuropsychological evaluation of cognitive functions, which was primarily applied in patients with neurological disorders and in the cognitive evaluation in schizophrenia and other related disorders. As proposed by Luria, cognitive processes, associated with higher cortical functions, may represent functional systems that are not localized in narrow, circumscribed areas of the brain, but occur among groups of concertedly working brain structures, each of which makes its own particular contribution to the organization of the functional system. Current developments in neuroscience provide evidence of functional connectivity in the brain. Therefore, Luria's approach may serve as a frame of reference for the analysis and interpretation of cognitive functions in general and their abnormalities in schizophrenia in particular. Having said that, modern technology, as well as experimental evidence, may help us to understand the brain better and lead us towards creating a new classification of cognitive functions. In schizophrenia research, multidisciplinary approaches must be utilized to address specific cognitive alterations. The relationships among the components of cognitive functions derived from the functional connectivity of the brain may provide an insight into cognitive machinery.
- MeSH
- lidé MeSH
- mozek patofyziologie MeSH
- neuropsychologické testy MeSH
- schizofrenie etiologie MeSH
- výzkum * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided.
- MeSH
- algoritmy * MeSH
- dospělí MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- nervová síť fyziologie MeSH
- počítačové zpracování signálu MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- sluchová percepce fyziologie MeSH
- sluchové evokované potenciály fyziologie MeSH
- sluchové korové centrum fyziologie MeSH
- vylepšení obrazu metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH