Nejvíce citovaný článek - PubMed ID 11521734
Ontogenetic development of energy-supplying enzymes in rat and guinea-pig heart
Postnatal maturation of the heart is characterized by decreasing tolerance to ischemia/reperfusion (I/R) injury associated with significant changes in mitochondrial function. The aim of this study is to test the hypothesis that the role of the mitochondrial membrane permeability transition pore (MPTP) in the I/R injury differs in the neonatal and in the adult heart. For this purpose, the effect of blockade of MPTP on the degree of I/R injury and the sensitivity of MPTP to swelling-inducing agents was compared in hearts from neonatal (7 days old) and adult (90 days old) Wistar rats. It was found that the release of NAD(+) from the perfused heart induced by I/R can be prevented by sanglifehrin A (SfA) only in the adult myocardium; SfA had no protective effect in the neonatal heart. Furthermore, the extent of Ca-induced swelling of mitochondria from neonatal rats was significantly lower than that from the adult animals; mitochondria from neonatal rats were more resistant at higher concentrations of calcium. In addition, not only the extent but also the rate of calcium-induced swelling was about twice higher in adult than in neonatal mitochondria. The results support the idea that lower sensitivity of the neonatal MPTP to opening may be involved in the mechanism of the higher tolerance of the neonatal heart to I/R injury.
- MeSH
- krysa rodu Rattus MeSH
- laktony farmakologie MeSH
- novorozená zvířata MeSH
- potkani Wistar MeSH
- přechodový pór mitochondriální permeability MeSH
- reperfuzní poškození metabolismus MeSH
- spirosloučeniny farmakologie MeSH
- srdeční mitochondrie metabolismus MeSH
- transportní proteiny mitochondriální membrány metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- laktony MeSH
- přechodový pór mitochondriální permeability MeSH
- sanglifehrin A MeSH Prohlížeč
- spirosloučeniny MeSH
- transportní proteiny mitochondriální membrány MeSH
The aim of this study was to determine the concentration of phospholipids (PL), plasmalogen components of choline (PC) and ethanolamine (PE) phosphoglycerides (PLPC, PLPE) and fatty acid profile of PL and triacylglycerols (TAG) in developing rat left ventricular myocardium between postnatal day (d) 2 and 100. The steepest increase of total PL (TPL) concentration occurs between d2 and d5, followed by a further slower increase between d20 and d40. Similar developmental changes were observed in PC and PE. The PLPE concentration rises by d10, whereas PLPC does not change during the whole period investigated, except for the transient decline on d5. The concentration of diphosphatidylglycerol (DPG) increases by d60; the steepest rise occurs between d20 and d40. Phosphatidylinositol (PI) concentration rises only by d5. The concentration of phosphatidylserine (PS) decreases between d5 and d10 and then it does not change. Sphingomyelin (SM) concentration is maintained till d10, it declines on d20 and does not change thereafter. The proportion of saturated fatty acids (SFA) increases by d5 in PC, PE, PS and TAG, and by d10 in DPG and PI. After d20 the SFA proportion gradually decline in all lipids. Monounsaturated FA (MUFA) proportion decreases in PC, PE, PI and PS from d2 till d10, and in the weaning period it tends to rise again. In contrast, in DPG and TAG the proportion of MUFA declines during the whole postnatal period. N-6 polyunsaturated FA (PUFA) decrease in all PL by d20 and rise again thereafter; in TAG they decline between d2 and d10 and return to the initial level by d100. N-3 PUFA increase in all PL during the suckling period and decline after weaning; in TAG they increase only by d5 and then they decline. This remodeling of myocardial PL and TAG composition during postnatal development may affect membrane properties and contribute to developmental changes in the function of membrane proteins and cell signaling.
- MeSH
- cholin metabolismus MeSH
- fosfatidylinositoly analýza metabolismus MeSH
- fosfatidylseriny analýza metabolismus MeSH
- fosfolipidy chemie metabolismus MeSH
- krysa rodu Rattus MeSH
- mastné kyseliny analýza metabolismus MeSH
- myokard chemie metabolismus MeSH
- plasmalogeny metabolismus MeSH
- potkani Wistar MeSH
- srdce růst a vývoj MeSH
- srdeční komory cytologie MeSH
- triglyceridy metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholin MeSH
- fosfatidylinositoly MeSH
- fosfatidylseriny MeSH
- fosfolipidy MeSH
- mastné kyseliny MeSH
- plasmalogeny MeSH
- triglyceridy MeSH