Most cited article - PubMed ID 14533484
Detection of Burkholderia pseudomallei in rice fields with PCR-based technique
The increasing human population expected in the next decades, the growing demand of livestock products-which production requires higher amounts of feed products fabrication, the collective concern about food quality in industrialized countries together with the need to protect the fertility of soils, in particular, and the environment, in general, constitute as a whole big challenge that worldwide agriculture has to face nowadays. Some soil bacteria harbor mechanisms to promote plant growth, which include phytostimulation, nutrient mobilization, biocontrol of plant pathogens and abiotic stresses protection. These bacteria have also been proved as promoters of vegetable food quality. Therefore, these microbes, also so-called Plant Probiotic Bacteria, applied as biofertilizers in crop production, constitute an environmental friendly manner to contribute to produce the food and feed needed to sustain world population. In this review, we summarize some of the best-known mechanisms of plant probiotic bacteria to improve plant growth and develop a more sustainable agriculture.
- Keywords
- beneficial bacteria, biofertilizer, plant growth promotion, sustainable agriculture,
- Publication type
- Journal Article MeSH
- Review MeSH
Sixteen samples of two soil cores (about 550 and 180 cm in depth) were drilled at intervals in the lower reach of Heihe river basin (northwest of China) in order to illustrate soil microbial characteristics and diversity of culturable bacteria in an extreme by arid environment. Soil water content, organic matter, total nitrogen, pH, direct cell counts, and culturable microorganism counts were evaluated. The total cell concentration was 19-1120/microg (i.e. 0.19-11.2 x 10(8) per g) soil, the culturable bacteria count being 0.2-10.9 per microg (i.e. 2 x 10(5)-10.9 x 10(6) CFU/g) soil. The number of direct cell counts obtained by 4',6-diamidino-2-phenylindole-staining or the cound of culturable microbes after enrichment with different media were statistically significantly correlated with soil organic matters, total nitrogen content, soil water content and surface vegetation; this partly explained the larger number in the deeper first core than in the shallower one. As part of identification of 228 colonies isolated from the two cores, thirty-two were selected for 16S rDNA amplification, sequencing and molecular identification. These 32 isolates were affiliated to 5 major groups of bacteria: alpha-Proteobacteria, 5-Proteobacteria, gamma-Proteobacteria, the high-G+C G+-bacteria, the low-G+C G- -bacteria, and the Cytophaga-Flexibacter-Bacteroides group. Twenty-eight were rod- or short-rod shaped, which accounted for >87.5% of all species; only 4 of 32 species were cocci (<12.5%).
The microbial community structure along an altitude gradient was investigated in different localities, in Kalasi lake, Urumqi river and Sangong river, Xingjiang (China). The mean numbers of DAPI (4',6-diamidino-2-phenylindole)-stained cells were lower in Kalasi lake than that in Urumqi river and Sangong river; these differences were attributed to increasing environmental harshness including lower soil organic carbon and nitrogen content, more acidic pH and lower annual temperature. In each locality, the numbers of bacteria and archaea measured with two fluorescence-labeled 16S rRNA oligonucleotide probes (EUB338 and ARCH915) were higher in a coniferous forest and lower in desert vegetation. A significant and positive relationship was found between microbial and soil organic carbon and total nitrogen along the altitudinal gradient, indicating that plant communities and soil nutrients influence the soil microbial structure. The results show that the microbial population in higher latitudinal site was fewer than lower latitudinal one, soil microorganisms were positively correlated to soil organic carbon and total nitrogen, and plant communities had an obviously impact on soil microbes.
- MeSH
- Archaea genetics isolation & purification MeSH
- Genes, Archaeal MeSH
- Bacteria genetics isolation & purification MeSH
- Genes, Bacterial MeSH
- Staining and Labeling MeSH
- Nitrogen analysis MeSH
- Ecosystem MeSH
- Genes, rRNA MeSH
- Geologic Sediments chemistry microbiology MeSH
- Indoles metabolism MeSH
- Hydrogen-Ion Concentration MeSH
- Altitude MeSH
- Colony Count, Microbial MeSH
- Soil Microbiology * MeSH
- DNA, Ribosomal analysis MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Temperature MeSH
- Carbon analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- China MeSH
- Names of Substances
- DAPI MeSH Browser
- Nitrogen MeSH
- Indoles MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 16S MeSH
- Carbon MeSH