Nejvíce citovaný článek - PubMed ID 14681689
This study aimed to determine the effects of Zn sources, used with potato fiber (PF) or lignocellulose (LC), on electrolyte concentration and the mucus layer in the large intestine of pigs. The experiment involved 24 barrows with an initial body weight of 10.8 ± 0.82 kg, divided into four groups fed the following diets: LC and ZnSO4, LC and Zn glycinate (ZnGly), PF and ZnSO4, or PF and ZnGly. Fiber supplements provided 10 g crude fiber/kg diet, while Zn additives introduced 120 mg Zn/kg diet. After four weeks of feeding, the pigs were sacrificed and digesta and tissue samples were taken from the cecum and colon. PF increased the water content and decreased the phosphorus concentration in the large intestine in comparison with LC. PF also increased calcium, iron, and chloride concentrations in the descending colon. Mucus layer thickness and histological parameters of the large intestine were not affected. ZnGly diets increased MUC12 expression in the cecum as compared to the LC-ZnSO4 group. In the ascending colon, the PF-ZnGly diet increased MUC5AC expression, while both PF groups had greater MUC20 expression in comparison with the LC-ZnSO4 group. In the transverse colon, the LC-ZnGly group and both PF groups had higher MUC5AC expression in comparison with the LC-ZnSO4 group, and both ZnGly groups had higher MUC20 expression than ZnSO4 groups. PF and ZnGly increased MUC4 and MUC5AC expression in the descending colon. PF and ZnGly may exert a beneficial effect on colon health in pigs by upregulating the expression of the MUC5AC and MUC20 genes and are more effective than LC and ZnSO4.
- Klíčová slova
- colon, electrolytes, mucins, mucosa, piglet, potato fiber, zinc,
- MeSH
- dieta MeSH
- elektrolyty MeSH
- krmivo pro zvířata MeSH
- potravní doplňky MeSH
- potravní vláknina farmakologie MeSH
- prasata MeSH
- síran zinečnatý * farmakologie MeSH
- sliznice metabolismus MeSH
- tlusté střevo metabolismus MeSH
- zinek * metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- elektrolyty MeSH
- potravní vláknina MeSH
- síran zinečnatý * MeSH
- zinek * MeSH
BACKGROUND: Inherited susceptibility and environmental carcinogens are crucial players in lung cancer etiology, and both exhibit population heterogeneity. MUC16 is overexpressed in various cancers and often associated with poor prognosis. Present work was to investigate the clinical significance of MUC16 in non-small cell lung cancer patients affected by familial lung cancer (FLC) and indoor air pollution caused by coal use. METHODS: Clinicopathologic characteristics and MUC16 expression were analyzed and evaluated in our subject population. Vectors were constructed for MUC16 gene knockout and overexpression, then we examined how MUC16 affected lung cancer cell behaviors, including proliferation, migration, invasion and chemoresistance. RESULTS: FLC showed significant association with early-onset (P<0.01) and later stage (P<0.01). Indoor air pollution was associated with younger age (P<0.01), later stage (P<0.05) and AD histology type (P<0.05). Interestingly, two age peaks were observed in our FLC and sporadic group respectively, possibly suggesting multiple major contributors to lung cancer in our subject population. MUC16 overexpression was significantly associated with FLC (P<0.05), indoor air pollution (P<0.01) and later stage (P<0.01), additionally more metastasis cases were observed in patients with up-regulated MUC16 (18.1% vs. 10.3%). Taken together, elevated MUC16 may potentially be one molecular character of FLC in local residents. Intriguingly, patients with more MUC16 up-regulation seemed to have a lower number of white blood cells, especially neutrophils, this reflected MUC16's role in immune regulation. In cell behavior experiments, high MUC16 level could contribute to lung cancer cell proliferation, migration, invasion and chemoresistance, but there were variations among cell lines. CONCLUSIONS: MUC16 plays crucial roles in lung cancer pathogenesis, progression and chemoresistance. Interestingly, its association with FLC and indoor air pollution highlights the complexity of lung cancer etiology. Our findings provide useful information to study the intricate interaction between environmental carcinogens and population genetic background.
- Klíčová slova
- Indoor air pollution, MUC16, chemoresistance, familial lung cancer (FLC),
- Publikační typ
- časopisecké články MeSH
Mucins and their glycosylation have been suggested to play an important role in colorectal carcinogenesis. We examined potentially functional genetic variants in the mucin genes or genes involved in their glycosylation with respect to colorectal cancer (CRC) risk and clinical outcome. We genotyped 23 single nucleotide polymorphisms (SNPs) covering 123 SNPs through pairwise linkage disequilibrium (r2>0.80) in the MUC1, MUC2, MUC4, MUC5AC, MUC6, and B3GNT6 genes in a hospital-based case-control study of 1532 CRC cases and 1108 healthy controls from the Czech Republic. We also analyzed these SNPs in relation to overall survival and event-free survival in a subgroup of 672 patients. Among patients without distant metastasis at the time of diagnosis, two MUC4 SNPs, rs3107764 and rs842225, showed association with overall survival (HR 1.40, 95%CI 1.08-1.82, additive model, log-rank p = 0.004 and HR 0.64, 95%CI 0.42-0.99, recessive model, log-rank p = 0.01, respectively) and event-free survival (HR 1.31, 95%CI 1.03-1.68, log-rank p = 0.004 and HR 0.64, 95%CI 0.42-0.96, log-rank p = 0.006, respectively) after adjustment for age, sex and TNM stage. Our data suggest that genetic variation especially in the transmembrane mucin gene MUC4 may play a role in the survival of CRC and further studies are warranted.
- MeSH
- doba přežití bez progrese choroby MeSH
- dospělí MeSH
- genotyp MeSH
- glykosylace MeSH
- jednonukleotidový polymorfismus genetika MeSH
- Kaplanův-Meierův odhad MeSH
- kolorektální nádory genetika mortalita patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mucin 4 genetika metabolismus MeSH
- muciny genetika metabolismus MeSH
- nádorové biomarkery genetika MeSH
- nádory tračníku genetika mortalita patologie MeSH
- přežití bez známek nemoci MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- vazebná nerovnováha MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- MUC4 protein, human MeSH Prohlížeč
- mucin 4 MeSH
- muciny MeSH
- nádorové biomarkery MeSH
Mucins are a family of large glycoproteins that represent the major structural components of the mucus and are encoded by 20 different mucin genes. Mucin expression can be modulated by different stimuli. In this study, we analyzed four mucins (MUC2, MUC3, MUC13, and MUC17) in coculture of Caco-2/HT29-MTX cells to demonstrate the variation in gene expression in the presence of antioxidant compounds like chlorogenic acid, epicatechin gallate, and quercetin (apple, tea, and coffee polyphenols, respectively). coculture of Caco-2/HT29-MTX cells was treated with polyphenols, and the expression of four mucins was determined by reverse-transcriptase PCR. In addition, the secretion levels of MUC2 were established by enzyme-linked immunoassay (ELISA) analysis. The results showed that each polyphenol compound induces different expression patterns of the mucin genes. Statistically significant up-regulation of MUC17 was observed following incubation with epicatechin gallate and quercetin. ELISA results did not prove any significant differences in protein levels of MUC2 after treatment by the polyphenol compounds. The polyphenols considered in this study may influence mucin secretion and act on diverse salivary substrates to change the barrier properties of mucins for mucus secretion in different ways.
- Klíčová slova
- RT‐PCR, coculture of Caco‐2/HT29‐MTX cells, enzyme‐linked immunoassay, gene expression, phenolic constituents,
- Publikační typ
- časopisecké články MeSH