Nejvíce citovaný článek - PubMed ID 14973057
High-Risk neuroblastoma (NB) survival rate is still <50%, despite treatments being more and more aggressive. The biggest hurdle liable to cancer therapy failure is the drug resistance by tumor cells that is likely due to the intra-tumor heterogeneity (ITH). To investigate the link between ITH and therapy resistance in NB, we performed a single cell RNA sequencing (scRNAseq) of etoposide and cisplatin resistant NB and their parental cells. Our analysis showed a clear separation of resistant and parental cells for both conditions by identifying 8 distinct tumor clusters in etoposide-resistant/parental and 7 in cisplatin-resistant/parental cells. We discovered that drug resistance can affect NB cell identities; highlighting the bi-directional ability of adrenergic-to-mesenchymal transition of NB cells. The biological processes driving the identified resistant cell subpopulations revealed genes such as (BARD1, BRCA1, PARP1, HISTH1 axis, members of RPL family), suggesting a potential drug resistance due to the acquisition of DNA repair mechanisms and to the modification of the drug targets. Deconvolution analysis of bulk RNAseq data from 498 tumors with cell subpopulation signatures showed that the transcriptional heterogeneity of our cellular models reflected the ITH of NB tumors and allowed the identification of clusters associated with worse/better survival. Our study demonstrates the distinct cell populations characterized by genes involved in different biological processes can have a role in NB drug treatment failure. These findings evidence the importance of ITH in NB drug resistance studies and the chance that scRNA-seq analysis offers in the identification of genes and pathways liable for drug resistance.
- Klíčová slova
- Drug resistance, Intra-tumor heterogenity (ITH), Neuroblastoma (NB), Prognostic biomarkers, Single cell transcriptomics,
- Publikační typ
- časopisecké články MeSH
Breast cancer is the most common cancer in women in the world. The role of germline genetic variability in ATP-binding cassette (ABC) transporters in cancer chemoresistance and prognosis still needs to be elucidated. We used next-generation sequencing to assess associations of germline variants in coding and regulatory sequences of all human ABC genes with response of the patients to the neoadjuvant cytotoxic chemotherapy and disease-free survival (n = 105). A total of 43 prioritized variants associating with response or survival in the above testing phase were then analyzed by allelic discrimination in the large validation set (n = 802). Variants in ABCA4, ABCA9, ABCA12, ABCB5, ABCC5, ABCC8, ABCC11, and ABCD4 associated with response and variants in ABCA7, ABCA13, ABCC4, and ABCG8 with survival of the patients. No association passed a false discovery rate test, however, the rs17822931 (Gly180Arg) in ABCC11, associating with response, and the synonymous rs17548783 in ABCA13 (survival) have a strong support in the literature and are, thus, interesting for further research. Although replicated associations have not reached robust statistical significance, the role of ABC transporters in breast cancer should not be ruled out. Future research and careful validation of findings will be essential for assessment of genetic variation which was not in the focus of this study, e.g., non-coding sequences, copy numbers, and structural variations together with somatic mutations.
- Klíčová slova
- ABC transporter, breast cancer, competitive allele-specific PCR, disease-free survival, next-generation sequencing, therapy response,
- MeSH
- ABC transportéry genetika MeSH
- alely MeSH
- frekvence genu MeSH
- genetická variace * MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- Kaplanův-Meierův odhad MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- nádorové biomarkery * MeSH
- nádory prsu diagnóza genetika mortalita terapie MeSH
- neoadjuvantní terapie MeSH
- prognóza MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití MeSH
- výsledek terapie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportéry MeSH
- nádorové biomarkery * MeSH
INTRODUCTION: Ovarian cancer (OC) represents a serious disease with high mortality and lack of efficient predictive and prognostic biomarkers. ATP-binding cassette (ABC) proteins constitute a large family dedicated to active transmembrane transport including transport of xenobiotics. MATERIALS AND METHODS: mRNA level was measured by quantitative RT-PCR in tumor tissues from OC patients. Bioinformatics analyses were applied to two gene expression datasets (60 primary tumors and 29 peritoneal metastases). Two different approaches of expression data normalization were applied in parallel, and their results were compared. Data from publically available cancer datasets were checked to further validate our conclusions. RESULTS: The results showed significant connections between ABC gene expression profiles and time to progression (TTP), chemotherapy resistance, and metastatic progression in OC. Two consensus ABC gene profiles with clinical meaning were documented. (a) Downregulation of ABCC4, ABCC10, ABCD3, ABCE1, ABCF1, ABCF2, and ABCF3 was connected with the best sensitivity to chemotherapy and TTP. (b) Oppositely, downregulation of ABCB11 and upregulation of ABCB1 and ABCG2 were connected with the worst sensitivity to chemotherapy and TTP. Results from publicly available online databases supported our conclusions. CONCLUSION: This study stressed the connection between two well-documented ABC genes and clinicopathological features-ABCB1 and ABCG2. Moreover, we showed a comparable connection also for several other ABC genes-ABCB11, ABCC4, ABCC10, ABCD3, ABCE1, ABCF1, ABCF2, and ABCF3. Our results add new clinically relevant information to this oncology field and can stimulate further exploration.
- Klíčová slova
- ABC transporters, bioinformatics, ovarian cancer, resistance, signatures,
- MeSH
- ABC transportéry genetika MeSH
- chemorezistence genetika MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- nádory vaječníků genetika patologie MeSH
- peritoneální nádory genetika sekundární MeSH
- regulace genové exprese u nádorů * MeSH
- transkriptom MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ABC transportéry MeSH
- messenger RNA MeSH