Most cited article - PubMed ID 15104436
Multicenter bonding in organic chemistry. Geometry-sensitive 3c-2e bonding in (C...H...C) fragments of organic cations
Systematic scrutiny is carried out of the ability of multicentre bond indices and the NOEL-based similarity index dAB to serve as excited-state aromaticity criteria. These indices were calculated using state-optimized complete active-space self-consistent field wavefunctions for several low-lying singlet and triplet states of the paradigmatic molecules of benzene and square cyclobutadiene and the inorganic ring S2N2. The comparison of the excited-state indices with aromaticity trends for individual excited states suggested by the values of magnetic aromaticity criteria show that whereas the indices work well for aromaticity reversals between the ground singlet and first triplet electronic states, addressed by Baird's rule, there are no straightforward parallels between the two sets of data for singlet excited states. The problems experienced while applying multicentre bond indices and dAB to singlet excited states are explained by the loss of the information inherently present in wavefunctions and/or pair densities when calculating the first-order density matrix.
- Keywords
- excited-state aromaticity reversals, magnetic properties of excited states, molecular similarity, multicentre bond indices,
- MeSH
- Benzene chemistry MeSH
- Butadienes chemistry MeSH
- Electrons MeSH
- Quantum Theory MeSH
- Models, Molecular MeSH
- Molecular Structure * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 1,3-butadiene MeSH Browser
- Benzene MeSH
- Butadienes MeSH
Motivated by the known stability of the somewhat unusual Be2O2 rhombus, which features a short Be-Be distance but no direct metal-metal bonding, we investigate the nature of the bonding interactions in the analogous clusters MM'O2 (M, M' = Be, Mg, Ca). CCSD/cc-pVTZ and CCSD(T)/cc-pVQZ calculations, amongst others, are used to determine optimized geometries and the dissociation energies for splitting the MM'O2 clusters into metal oxide monomers. The primary tools used to investigate the chemical bonding are the analysis of domain-averaged Fermi holes, including the generation of localized natural orbitals, and the calculation of appropriate two- and three-center bond indices. Insights emerging from these various analyses concur with earlier studies of M2O2 rhombic clusters in that direct metal-metal bonding was not observed in the MM'O2 rings whereas weak three-center (3c) bonding was detected in the MOM' moieties. In general terms, these mixed MM'O2 clusters exhibit features that are intermediate between those of M2O2 and M'2O2, and the differences between the M and M' atoms appear to have little impact on the overall degree of 3c MOM' bonding. Graphical abstract Bonding situation in MM'O2 clusters (M, M' = Be, Mg, Ca).