Nejvíce citovaný článek - PubMed ID 15137106
Intracellular uptake of modified oligonucleotide studied by two fluorescence techniques
Surface-enhanced fluorescence (SEF) requires the absorption/emission band of the fluorophore, the localized surface plasmon resonance (LSPR) of the nanostructure and the excitation wavelength to fall in the same (or very close) spectral range. In this paper, we monitor the SEF intensity and lifetime dependence of riboflavin (vitamin B2) adsorbed on a spacer-modified Ag substrate with respect to the thickness of the spacer. The substrates were formed by silver nanoislands deposited onto magnetron-sputtered polytetrafluoroethylene (ms-PTFE). The spacer was formed by the ms-PTFE layer with the thickness ranging from ~5 to 25 nm. The riboflavin dissolved in dimethylsulfoxide (DMSO) at a 10 µM concentration forms, at the ms-PTFE surface, a homogeneous layer of adsorbed molecules corresponding to a monomolecular layer. The microspectroscopic measurements of the adsorbed layer were performed through a sessile droplet; our study has shown the advantages and limitations of this approach. Time-resolved fluorescence enabled us to determine the enhanced fluorescence quantum yield due to the shortening of the radiative decay in the vicinity of the plasmonic surface. For the 5 nm ms-PTFE layer possessing the largest (estimated 4×) fluorescence enhancement, the quantum yield was increased 2.3×.
- Klíčová slova
- enhancement factor, lifetime, riboflavin, surface-enhanced fluorescence (SEF), time-resolved,
- Publikační typ
- časopisecké články MeSH
Time-resolved microspectrofluorimetry and fluorescence microscopy imaging-two complementary fluorescence techniques-provide important information about the intracellular distribution, level of uptake and binding/interactions inside living cell of the labeled molecule of interest. They were employed to monitor the "fate" of AS1411 aptamer labeled by ATTO 425 in human living cells. Confocal microspectrofluorimeter adapted for time-resolved intracellular fluorescence measurements by using a phase-modulation principle with homodyne data acquisition was employed to obtain emission spectra and to determine fluorescence lifetimes in U-87 MG tumor brain cells and Hs68 non-tumor foreskin cells. Acquired spectra from both the intracellular space and the reference solutions were treated to observe the aptamer localization and its interaction with biological structures inside the living cell. The emission spectra and the maximum emission wavelengths coming from the cells are practically identical, however significant lifetime lengthening was observed for tumor cell line in comparison to non-tumor one.
- Klíčová slova
- AS1411 aptamer, Aptamer, Fluorescence microscopy imaging, Intracellular fluorescence, Phase-modulation lifetime measurement,
- MeSH
- aptamery nukleotidové metabolismus MeSH
- časové faktory MeSH
- fluorescenční mikroskopie metody MeSH
- fluorescenční spektrometrie metody MeSH
- intracelulární prostor genetika metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- oligodeoxyribonukleotidy genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AGRO 100 MeSH Prohlížeč
- aptamery nukleotidové MeSH
- oligodeoxyribonukleotidy MeSH