Nejvíce citovaný článek - PubMed ID 15236689
Analysis of synthetic derivatives of peptide hormones by capillary zone electrophoresis and micellar electrokinetic chromatography with ultraviolet-absorption and laser-induced fluorescence detection
The problem of a growing resistance of bacteria and other microorganisms to conventional antibiotics gave rise to a search for new potent antimicrobial agents. Insect antimicrobial peptides (AMPs) seem to be promising novel potential anti-infective therapeutics. The dipeptide β-alanyl-tyrosine (β-Ala-Tyr) is one of the endogenous insect toxins exhibiting antibacterial activity against both Gram-negative and Gram-positive bacteria. Prior to testing its other antimicrobial activities, it has to be prepared in a pure form. In this study, we have developed a capillary zone electrophoresis (CZE) method for analysis of β-Ala-Tyr isolated from the extract of the hemolymph of larvae of the fleshfly Neobellieria bullata by reversed-phase high-performance liquid chromatography (RP-HPLC). Based on our previously described correlation between CZE and free-flow zone electrophoresis (FFZE), analytical CZE separation of β-Ala-Tyr and its admixtures have been converted into preparative purification of β-Ala-Tyr by FFZE with preparative capacity of 45.5 mg per hour. The high purity degree of the β-Ala-Tyr obtained by FFZE fractionation was confirmed by its subsequent CZE analysis.
- Klíčová slova
- antimicrobial peptides, beta-alanyl-tyrosine, capillary zone electrophoresis, free-flow zone electrophoresis, peptide analysis, peptide purification,
- MeSH
- antiinfekční látky chemie izolace a purifikace MeSH
- dipeptidy chemie izolace a purifikace MeSH
- elektroforéza metody MeSH
- hemolymfa chemie MeSH
- larva chemie MeSH
- Sarcophagidae chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alanyltyrosine MeSH Prohlížeč
- antiinfekční látky MeSH
- dipeptidy MeSH
Rhomboid proteases are increasingly being explored as potential drug targets, but their potent and specific inhibitors are not available, and strategies for inhibitor development are hampered by the lack of widely usable and easily modifiable in vitro activity assays. Here we address this bottleneck and report on the development of new fluorogenic transmembrane peptide substrates, which are cleaved by several unrelated rhomboid proteases, can be used both in detergent micelles and in liposomes, and contain red-shifted fluorophores that are suitable for high-throughput screening of compound libraries. We show that nearly the entire transmembrane domain of the substrate is important for efficient cleavage, implying that it extensively interacts with the enzyme. Importantly, we demonstrate that in the detergent micelle system, commonly used for the enzymatic analyses of intramembrane proteolysis, the cleavage rate strongly depends on detergent concentration, because the reaction proceeds only in the micelles. Furthermore, we show that the catalytic efficiency and selectivity toward a rhomboid substrate can be dramatically improved by targeted modification of the sequence of its P5 to P1 region. The fluorogenic substrates that we describe and their sequence variants should find wide use in the detection of activity and development of inhibitors of rhomboid proteases.
- Klíčová slova
- enzyme kinetics, enzyme mechanism, fluorescence resonance energy transfer (FRET), intramembrane proteolysis, membrane reconstitution, rhomboid protease, substrate specificity, transmembrane domain,
- MeSH
- fluorescenční barviva chemie MeSH
- kinetika MeSH
- liposomy MeSH
- peptidy metabolismus MeSH
- proteasy metabolismus MeSH
- rezonanční přenos fluorescenční energie MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorescenční barviva MeSH
- liposomy MeSH
- peptidy MeSH
- proteasy MeSH