Most cited article - PubMed ID 15859176
Altitudinal distribution limit of the tick Ixodes ricinus shifted considerably towards higher altitudes in central Europe: results of three years monitoring in the Krkonose Mts. (Czech Republic)
Lyme borreliosis is the most common zoonotic disease transmitted by ticks in Europe and North America. Despite having multiple tick vectors, the causative agent, Borrelia burgdorferisensu lato, is vectored mainly by Ixodes ricinus in Europe. In the present study, we aimed to review and summarize the existing data published from 2010 to 2016 concerning the prevalence of B. burgdorferi sensu lato spirochetes in questing I. ricinus ticks. The primary focus was to evaluate the infection rate of these bacteria in ticks, accounting for tick stage, adult tick gender, region, and detection method, as well as to investigate any changes in prevalence over time. The data obtained were compared to the findings of a previous metastudy. The literature search identified data from 23 countries, with 115,028 ticks, in total, inspected for infection with B. burgdorferi sensu lato We showed that the infection rate was significantly higher in adults than in nymphs and in females than in males. We found significant differences between European regions, with the highest infection rates in Central Europe. The most common genospecies were B. afzelii and B. garinii, despite a negative correlation of their prevalence rates. No statistically significant differences were found among the prevalence rates determined by conventional PCR, nested PCR, and real-time PCR.IMPORTANCEBorrelia burgdorferisensu lato is a pathogenic bacterium whose clinical manifestations are associated with Lyme borreliosis. This vector-borne disease is a major public health concern in Europe and North America and may lead to severe arthritic, cardiovascular, and neurological complications if left untreated. Although pathogen prevalence is considered an important predictor of infection risk, solitary isolated data have only limited value. Here we provide summarized information about the prevalence of B. burgdorferi sensu lato spirochetes among host-seeking Ixodes ricinus ticks, the principal tick vector of borreliae in Europe. We compare the new results with previously published data in order to evaluate any changing trends in tick infection.
- Keywords
- Borrelia burgdorferi sensu lato, Ixodes ricinus, Lyme borreliosis, Lyme disease, genospecies, meta-analysis, tick,
- MeSH
- Arachnid Vectors microbiology MeSH
- Borrelia burgdorferi classification genetics isolation & purification MeSH
- Ixodes microbiology MeSH
- Humans MeSH
- Lyme Disease microbiology transmission MeSH
- Nymph microbiology MeSH
- Prevalence MeSH
- Zoonoses microbiology transmission MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
BACKGROUND: During the last decades, population densities of Ixodes ricinus and prevalences of Borrelia burgdorferi s.l. have increased in different regions in Europe. In the present study, we determined tick abundance and the prevalence of different Borrelia genospecies in ticks from three sites in the Siebengebirge, Germany, which were already examined in the years 1987, 1989, 2001 and 2003. Data from all investigations were compared. METHODS: In 2007 and 2008, host-seeking I. ricinus were collected by monthly blanket dragging at three distinct vegetation sites in the Siebengebirge, a nature reserve and a well visited local recreation area near Bonn, Germany. In both years, 702 ticks were tested for B. burgdorferi s.l. DNA by nested PCR, and 249 tick samples positive for Borrelia were further genotyped by reverse line blotting. RESULTS: A total of 1046 and 1591 I. ricinus were collected in 2007 and 2008, respectively. In comparison to previous studies at these sites, the densities at all sites increased from 1987/89 and/or from 2003 until 2008. Tick densities and Borrelia prevalences in 2007 and 2008, respectively, were not correlated for all sites and both years. Overall, Borrelia prevalence of all ticks decreased significantly from 2007 (19.5%) to 2008 (16.5%), thus reaching the same level as in 2001 two times higher than in 1987/89 (7.6%). Since 2001, single infections with a Borrelia genospecies predominated in all collections, but the number of multiple infections increased, and in 2007, for the first time, triple Borrelia infections occurred. Prevalences of Borrelia genospecies differed considerably between the three sites, but B. garinii or B. afzelii were always the most dominant genospecies. B. lusitaniae was detected for the first time in the Siebengebirge, also in co-infections with B. garinii or B. valaisiana. CONCLUSIONS: Over the last two centuries tick densities have changed in the Siebengebirge at sites that remained unchanged by human activity since they belong to a nature reserve. Abiotic and biotic conditions most likely favored the host-seeking activity of I. ricinus and the increase of multiple Borrelia infections in ticks. These changes have led to a potential higher risk of humans and animals to be infected with Lyme borreliosis.
- MeSH
- Borrelia burgdorferi Group classification genetics isolation & purification MeSH
- Time Factors MeSH
- DNA, Bacterial genetics MeSH
- Population Density MeSH
- Ixodes growth & development microbiology MeSH
- Polymerase Chain Reaction MeSH
- Prevalence MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Germany MeSH
- Names of Substances
- DNA, Bacterial MeSH
This article presents major epidemiologic features of tick-borne encephalitis (TBE) in the Czech Republic, using data of laboratory-confirmed cases since 1970. A total of 17,053 cases of TBE were reported in the Czech Republic (population 10 million) in 1970-2008. The data show several important features. First, the pattern of TBE incidence changed over time. Until the end of the 1970s, TBE was characterized by periods of alternately higher and lower incidence (between 180 and 595 cases per year); the 1980s were a period of low incidence with minimum variability; since the beginning of the 1990 s, there has been a steep rise in incidence, with marked year-to-year variation (e.g., 745 cases were registered in 1995, and a maximum of 1029 cases were registered in 2006). Second, the age distribution of TBE incidence has changed. Until the end of 1990 s, incidence peaked among those 15-19 years of age, with a gradual decline with age. In the 2000s, however, TBE incidence has been rising in those aged 60-64 years, with a sharp decline in those older than 65 years. Third, the seasonal pattern of TBE has changed markedly over time. In the earlier period, incidence had a clear peak in July/August; since the 1990 s, more cases have occurred in earlier and later months of the year. The proportion of cases occurring in April, May, October, and November increased from 9% in the 1970s to 23% in 2000-2008. Fourth, the geographical distribution of TBE also changed over time, with TBE increasingly occurring in the mountainous districts at higher altitudes. These changes in incidence patterns appear to be linked with changes in climatic and meteorological conditions. The link between climate change and TBE incidence is plausible, since TBE is a recreation-related infection associated with outdoor activities, and since climatic changes affect the life cycle of the vector.
- MeSH
- Arachnid Vectors virology MeSH
- Child MeSH
- Adult MeSH
- Incidence MeSH
- Ticks virology MeSH
- Encephalitis, Tick-Borne epidemiology mortality virology MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Altitude MeSH
- Climate MeSH
- Child, Preschool MeSH
- Seasons MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Sex Factors MeSH
- Age Factors MeSH
- Encephalitis Viruses, Tick-Borne physiology MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic epidemiology MeSH