Nejvíce citovaný článek - PubMed ID 17064927
Transgenic ipt tobacco overproducing cytokinins overaccumulates phenolic compounds during in vitro growth
Studies of vitality/mortality of cortex cells, as well as of the concentrations of ethylene (ETH), gibberellins (GAs), indolic compounds/auxins (ICs/AUXs) and cytokinins (CKs), were undertaken to explain the hormonal background of kinetin (Kin)-regulated cell death (RCD), which is induced in the cortex of the apical parts of roots of faba bean (Vicia faba ssp. minor) seedlings. Quantification was carried out with fluorescence microscopy, ETH sensors, spectrophotometry and ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS). The results indicated that Kin was metabolized to the transport form, i.e., kinetin-9-glucoside (Kin9G) and kinetin riboside (KinR). KinR was then converted to cis-zeatin (cZ) in apical parts of roots with meristems, to cis-zeatin riboside (cZR) in apical parts of roots without meristems and finally to cis-zeatin riboside 5'-monophosphate (cZR5'MP), which is indicated to be a ligand of cytokinin-dependent receptors inducing CD. The process may be enhanced by an increase in the amount of dihydrozeatin riboside (DHZR) as a byproduct of the pathway of zeatin metabolism. It seems that crosstalk of ETH, ICs/AUXs, GAs and CKs with the cZR5'MP, the cis-zeatin-dependent pathway, but not the trans-zeatin-dependent pathway, is responsible for Kin-RCD, indicating that the process is very specific and offers a useful model for studies of CD hallmarks in plants.
- MeSH
- buněčná smrt MeSH
- cytokininy metabolismus MeSH
- kinetin farmakologie MeSH
- kyseliny indoloctové MeSH
- semenáček metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Vicia faba * metabolismus MeSH
- zeatin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- kinetin MeSH
- kyseliny indoloctové MeSH
- zeatin MeSH
BACKGROUND AND AIMS: Cytokinins are positive regulators of shoot development. However, it has previously been demonstrated that efficient activation of the cytokinin biosynthesis gene ipt can cause necrotic lesions and wilting in tobacco leaves. Some plant pathogens reportedly use their ability to produce cytokinins in disease development. In response to pathogen attacks, plants can trigger a hypersensitive response that rapidly kills cells near the infection site, depriving the pathogen of nutrients and preventing its spread. In this study, a diverse set of processes that link ipt activation to necrotic lesion formation were investigated in order to evaluate the potential of cytokinins as signals and/or mediators in plant defence against pathogens. METHODS: The binary pOp-ipt/LhGR system for dexamethasone-inducible ipt expression was used to increase endogenous cytokinin levels in transgenic tobacco. Changes in the levels of cytokinins and the stress hormones salicylic, jasmonic and abscisic acid following ipt activation were determined by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). Trends in hydrogen peroxide content and lipid peroxidation were monitored using the potassium iodide and malondialdehyde assays. The subcellular distribution of hydrogen peroxide was investigated using 3,3'-diaminobenzidine staining. The dynamics of transcripts related to photosynthesis and pathogen response were analysed by reverse transcription followed by quantitative PCR. The effects of cytokinins on photosynthesis were deciphered by analysing changes in chlorophyll fluorescence and leaf gas exchange. KEY RESULTS: Plants can produce sufficiently high levels of cytokinins to trigger fast cell death without any intervening chlorosis - a hallmark of the hypersensitive response. The results suggest that chloroplastic hydrogen peroxide orchestrates the molecular responses underpinning the hypersensitive-like response, including the inhibition of photosynthesis, elevated levels of stress hormones, oxidative membrane damage and stomatal closure. CONCLUSIONS: Necrotic lesion formation triggered by ipt activation closely resembles the hypersensitive response. Cytokinins may thus act as signals and/or mediators in plant defence against pathogen attack.
- Klíčová slova
- Cytokinin, Nicotiana tabacum, abscisic acid, hydrogen peroxide, hypersensitive response, jasmonic acid, lipid peroxidation, non-photochemical quenching, pathogenesis-related proteins, photosynthesis, salicylic acid, stomatal conductance,
- MeSH
- alkyltransferasy a aryltransferasy genetika MeSH
- buněčná smrt MeSH
- chlorofyl metabolismus MeSH
- chloroplasty genetika metabolismus MeSH
- cytokininy genetika metabolismus MeSH
- dexamethason farmakologie MeSH
- fotosyntéza genetika MeSH
- geneticky modifikované rostliny MeSH
- interakce hostitele a patogenu * MeSH
- listy rostlin cytologie genetika fyziologie MeSH
- nekróza genetika MeSH
- oxidační stres genetika MeSH
- peroxid vodíku metabolismus MeSH
- peroxidace lipidů MeSH
- průduchy rostlin fyziologie MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin genetika metabolismus MeSH
- tabák genetika mikrobiologie fyziologie MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylate isopentenyltransferase MeSH Prohlížeč
- alkyltransferasy a aryltransferasy MeSH
- chlorofyl MeSH
- cytokininy MeSH
- dexamethason MeSH
- peroxid vodíku MeSH
- regulátory růstu rostlin MeSH