photosynthesis
Dotaz
Zobrazit nápovědu
On behalf of the entire photosynthesis community, it is an honor, for us, to write about two very eminent scientists who were recently recognised with a Lifetime Achievement Award from the International Society of Photosynthesis Research (ISPR) on August 5, 2022; this prestigious Award was given during the closing ceremony of the 18th International Congress on Photosynthesis Research in Dunedin, New Zealand. The awardees were: Professor Eva-Mari Aro (Finland) and Professor Emeritus Govindjee Govindjee (USA). One of the authors, Anjana Jajoo, is especially delighted to be a part of this tribute to professors Aro and Govindjee as she was lucky enough to have worked with both of them.
- Klíčová slova
- Eva-Mari Aro, Govindjee Govindjee, ISPR awards, Photosynthesis,
- MeSH
- fotosyntéza * MeSH
- odměny a ceny * MeSH
- úspěšnost MeSH
- Publikační typ
- biografie MeSH
- časopisecké články MeSH
BACKGROUND: With limited agricultural land and increasing human population, it is essential to enhance overall photosynthesis and thus productivity. Oxygenic photosynthesis begins with light absorption, followed by excitation energy transfer to the reaction centres, primary photochemistry, electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin-Benson cycle, as well as Hatch-Slack cycle). Here we cover some of the discoveries related to this process, such as the existence of two light reactions and two photosystems connected by an electron transport 'chain' (the Z-scheme), chemiosmotic hypothesis for ATP synthesis, water oxidation clock for oxygen evolution, steps for carbon fixation, and finally the diverse mechanisms of regulatory processes, such as 'state transitions' and 'non-photochemical quenching' of the excited state of chlorophyll a. SCOPE: In this review, we emphasize that mathematical modelling is a highly valuable tool in understanding and making predictions regarding photosynthesis. Different mathematical models have been used to examine current theories on diverse photosynthetic processes; these have been validated through simulation(s) of available experimental data, such as chlorophyll a fluorescence induction, measured with fluorometers using continuous (or modulated) exciting light, and absorbance changes at 820 nm (ΔA820) related to redox changes in P700, the reaction centre of photosystem I. CONCLUSIONS: We highlight here the important role of modelling in deciphering and untangling complex photosynthesis processes taking place simultaneously, as well as in predicting possible ways to obtain higher biomass and productivity in plants, algae and cyanobacteria.
- Klíčová slova
- Calvin–Benson cycle, chlorophyll a fluorescence induction, discoveries in photosynthesis, modelling, non-photochemical quenching (of the excited state of chlorophyll a), photosynthetic electron transport, state transitions,
- MeSH
- biomasa MeSH
- chlorofyl a * MeSH
- chlorofyl MeSH
- fotosyntéza * MeSH
- fotosystém II (proteinový komplex) MeSH
- kyslík MeSH
- lidé MeSH
- světlo MeSH
- transport elektronů MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chlorofyl a * MeSH
- chlorofyl MeSH
- fotosystém II (proteinový komplex) MeSH
- kyslík MeSH
- voda MeSH
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotection and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.
- Klíčová slova
- C4 rice, Improving photosynthesis and crop yield, Leaf and crop models, Photorespiration bypasses, Photosynthesis models, Synthetic biology,
- MeSH
- biologické modely MeSH
- fotosyntéza * fyziologie MeSH
- listy rostlin * fyziologie metabolismus růst a vývoj MeSH
- teoretické modely MeSH
- transport elektronů MeSH
- zemědělské plodiny * růst a vývoj genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plants are exposed to a temporally and spatially heterogeneous environment, and photosynthesis is well adapted to these fluctuations. Understanding of the complex, non-linear dynamics of photosynthesis in fluctuating light requires novel-modeling approaches that involve not only the primary light and dark biochemical reactions, but also networks of regulatory interactions. This requirement exceeds the capacity of the existing molecular models that are typically reduced to describe a partial process, dynamics of a specific complex or its particular dynamic feature. We propose a concept of comprehensive model that would represent an internally consistent, integral framework combining information on the reduced models that led to its construction. This review explores approaches and tools that exist in engineering, mathematics, and in other domains of biology that can be used to develop a comprehensive model of photosynthesis. Equally important, we investigated techniques by which one can rigorously reduce such a comprehensive model to models of low dimensionality, which preserve dynamic features of interest and, thus, contribute to a better understanding of photosynthesis under natural and thus fluctuating conditions. The web-based platform www.e-photosynthesis.org is introduced as an arena where these concepts and tools are being introduced and tested.
- MeSH
- biologické modely * MeSH
- chlorofyl metabolismus MeSH
- fluorescence MeSH
- fotosyntéza účinky záření MeSH
- světlo * MeSH
- systémová biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chlorofyl MeSH
Progress in various fields of microscopy techniques brought up enormous possibilities to study the photosynthesis down to the level of individual pigment-protein complexes. The aim of this review is to present recent developments in the photosynthesis research obtained using such highly advanced techniques. Three areas of microscopy techniques covering optical microscopy, electron microscopy and scanning probe microscopy are reviewed. Whereas the electron microscopy and scanning probe microscopy are used in photosynthesis mainly for structural studies of photosynthetic pigment-protein complexes, the optical microscopy is used also for functional studies.
- MeSH
- elektronová mikroskopie MeSH
- fotosyntéza * MeSH
- fotosystém I (proteinový komplex) metabolismus MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- krystalografie MeSH
- mikroskopie * MeSH
- spektrální analýza MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fotosystém I (proteinový komplex) MeSH
- fotosystém II (proteinový komplex) MeSH
- světlosběrné proteinové komplexy MeSH
In this Perspective article, we describe the visions of the PhotoRedesign consortium funded by the European Research Council of how to enhance photosynthesis. The light reactions of photosynthesis in individual phototrophic species use only a fraction of the solar spectrum, and high light intensities can impair and even damage the process. In consequence, expanding the solar spectrum and enhancing the overall energy capacity of the process, while developing resilience to stresses imposed by high light intensities, could have a strong positive impact on food and energy production. So far, the complexity of the photosynthetic machinery has largely prevented improvements by conventional approaches. Therefore, there is an urgent need to develop concepts to redesign the light-harvesting and photochemical capacity of photosynthesis, as well as to establish new model systems and toolkits for the next generation of photosynthesis researchers. The overall objective of PhotoRedesign is to reconfigure the photosynthetic light reactions so they can harvest and safely convert energy from an expanded solar spectrum. To this end, a variety of synthetic biology approaches, including de novo design, will combine the attributes of photosystems from different photoautotrophic model organisms, namely the purple bacterium Rhodobacter sphaeroides, the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana. In parallel, adaptive laboratory evolution will be applied to improve the capacity of reimagined organisms to cope with enhanced input of solar energy, particularly in high and fluctuating light.
- Klíčová slova
- Rhodobacter, Synechocystis, Arabidopsis, adaptive laboratory evolution, assembly, evolution, genetic engineering, photosynthesis, photosystem, synthetic biology,
- MeSH
- Arabidopsis genetika fyziologie účinky záření MeSH
- fotosyntéza genetika MeSH
- fotosystém I (proteinový komplex) genetika MeSH
- fotosystém II (proteinový komplex) genetika MeSH
- Rhodobacter sphaeroides genetika fyziologie účinky záření MeSH
- řízená evoluce molekul * MeSH
- světlo MeSH
- Synechocystis genetika fyziologie účinky záření MeSH
- syntetická biologie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém I (proteinový komplex) MeSH
- fotosystém II (proteinový komplex) MeSH
The photosynthetic performance of crop plants under a variety of environmental factors and stress conditions, at the fundamental level, depends largely on the organization and structural flexibility of thylakoid membranes. These highly organized membranes accommodate virtually all protein complexes and additional compounds carrying out the light reactions of photosynthesis. Most regulatory mechanisms fine-tuning the photosynthetic functions affect the organization of thylakoid membranes at different levels of the structural complexity. In order to monitor these reorganizations, non-invasive techniques are of special value. On the mesoscopic scale, small-angle neutron scattering (SANS) has been shown to deliver statistically and spatially averaged information on the periodic organization of the thylakoid membranes in vivo and/or, in isolated thylakoids, under physiologically relevant conditions, without fixation or staining. More importantly, SANS investigations have revealed rapid reversible reorganizations on the timescale of several seconds and minutes. In this paper, we give a short introduction into the basics of SANS technique, advantages and limitations, and briefly overview recent advances and potential applications of this technique in the physiology and biotechnology of crop plants. We also discuss future perspectives of neutron crystallography and different neutron scattering techniques, which are anticipated to become more accessible and of more use in photosynthesis research at new facilities with higher fluxes and innovative instrumentation.
- Klíčová slova
- Macro-organization, Neutron scattering, Regulatory mechanisms, Structural flexibility, Thylakoid membrane,
- MeSH
- fotosyntéza * MeSH
- maloúhlový rozptyl MeSH
- neutrony MeSH
- tylakoidy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Cytokinins modulate a number of important developmental processes, including the last phase of leaf development, known as senescence, which is associated with chlorophyll breakdown, photosynthetic apparatus disintegration and oxidative damage. There is ample evidence that cytokinins can slow down all these senescence-accompanying changes. Here, we review relationships between the various mechanisms of action of these regulatory molecules. We highlight their connection to photosynthesis, the pivotal process that generates assimilates, however may also lead to oxidative damage. Thus, we also focus on cytokinin induction of protective responses against oxidative damage. Activation of antioxidative enzymes in senescing tissues is described as well as changes in the levels of naturally occurring antioxidative compounds, such as phenolic acids and flavonoids, in plant explants. The main goal of this review is to show how the biological activities of cytokinins may be related to their chemical structure. New links between molecular aspects of natural cytokinins and their synthetic derivatives with antisenescent properties are described. Structural motifs in cytokinin molecules that may explain why these molecules play such a significant regulatory role are outlined.
- Klíčová slova
- antioxidant, antioxidant enzymes, antisenescent, cytokinin, derivative, genes, photosynthesis, plant defence, structure and activity relationship,
- MeSH
- antioxidancia chemie metabolismus MeSH
- cytokininy chemie metabolismus MeSH
- flavonoidy analýza MeSH
- fotosyntéza MeSH
- listy rostlin chemie růst a vývoj fyziologie MeSH
- molekulární struktura MeSH
- rostliny chemie MeSH
- vývoj rostlin MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- cytokininy MeSH
- flavonoidy MeSH
In Arabidopsis, the plastidial isoform of phosphoglucose isomerase, PGI1, mediates growth and photosynthesis, likely due to its involvement in the vascular production of cytokinins (CK). To examine this hypothesis, we characterized pgi1-2 knockout plants impaired in PGI1 and pgi1-2 plants specifically expressing PGI1 in root tips and vascular tissues. Moreover, to investigate whether the phenotype of pgi1-2 plants is due to impairments in the plastidial oxidative pentose phosphate pathway (OPPP) or the glycolytic pathway, we characterized pgl3-1 plants with reduced OPPP and pfk4pfk5 knockout plants impaired in plastidial glycolysis. Compared with wild-type (WT) leaves, pgi1-2 leaves exhibited weaker expression of photosynthesis- and 2-C-methyl-D-erythritol 4-P (MEP) pathway-related proteins, and stronger expression of oxidative stress protection-related enzymes. Consistently, pgi1-2 leaves accumulated lower levels of chlorophyll, and higher levels of tocopherols, flavonols and anthocyanins than the WT. Vascular- and root tip-specific PGI1 expression countered the reduced photosynthesis, low MEP pathway-derived CK content, dwarf phenotype and the metabolic characteristics of pgi1-2 plants, reverting them to WT-like levels. Moreover, pgl3-1, but not pfk4pfk5 plants phenocopied pgi1-2. Histochemical analyses of plants expressing GUS under the control of promoter regions of genes encoding plastidial OPPP enzymes exhibited strong GUS activity in root tips and vascular tissues. Overall, our findings show that root tip and vascular PGI1-mediated plastidial OPPP activity affects photosynthesis and growth through mechanisms involving long-distance modulation of the leaf proteome by MEP pathway-derived CKs.
- Klíčová slova
- Cytokinin, MEP pathway, Oxidative pentose phosphate pathway, Photosynthesis,
- MeSH
- anthokyaniny metabolismus MeSH
- Arabidopsis * metabolismus MeSH
- cytokininy metabolismus MeSH
- fotosyntéza MeSH
- pentózofosfátový cyklus * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthokyaniny MeSH
- cytokininy MeSH
Plants growing in nature often experience fluctuating irradiance. However, in the laboratory, the dynamics of photosynthesis are usually explored by instantaneously exposing dark-adapted plants to constant light and examining the dark-to-light transition, which is a poor approximation of natural phenomena. With the aim creating a better approximation, we exposed leaves of pea (Pisum sativum) to oscillating light and measured changes in the functioning of PSI and PSII, and of the proton motive force at the thylakoid membrane. We found that the dynamics depended on the oscillation period, revealing information about the underlying regulatory networks. As demonstrated for a selected oscillation period of 60 s, the regulation tries to keep the reaction centers of PSI and PSII open. We present an evaluation of the data obtained, and discuss the involvement of particular processes in the regulation of photosynthesis. The forced oscillations provided an information-rich fingerprint of complex regulatory networks. We expect future progress in understanding these networks from experiments involving chemical interventions and plant mutants, and by using mathematical modeling and systems identification and control tools.
- Klíčová slova
- Pisum sativum, Fluctuating light, forced oscillations, pea, photosynthesis, photosystem I and II, proton motive force, regulation,
- MeSH
- fotosyntéza fyziologie MeSH
- fotosystém I (proteinový komplex) metabolismus MeSH
- fotosystém II (proteinový komplex) * metabolismus MeSH
- hrách setý * metabolismus MeSH
- listy rostlin metabolismus MeSH
- rostliny metabolismus MeSH
- světlo MeSH
- transport elektronů fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém I (proteinový komplex) MeSH
- fotosystém II (proteinový komplex) * MeSH