Monascus pigments having yellow, orange, and red colors are widely studied for their potential beneficial properties. Many different biological activities have been reported regarding Monascus pigments and their derivatives, but the usual method is to test complex extracts from the mycelium of the fungus or from a fungus-fermented substrate. However, this review is mainly concerned with the biological activities of purified Monascus pigments. Both yellow (ankaflavin, monascin) and red (rubropunctamine, monascorubramine) Monascus pigments are proven antioxidants if used in concentrations of 10 μg/mL or higher. Antimicrobial activity against Gram-positive and Gram-negative bacteria and fungi has been observed with all Monascus pigments. However, the best antimicrobials are red Monascus pigments, and their amino acid derivatives (l-cysteine derivatives have MIC 4 μg/mL against Enterococcus faecalis). Yellow monaphilones and orange monaphilols seem to have the highest anti-inflammatory activity (IC50 1.7 μM of monaphilol D) and, together with red Monascus pigment derivatives, have mild antiobesity and antidiabetic activities. Further, monascin and ankaflavin in daily doses of 0.5 and 0.08 mg, respectively, lowered serum blood levels of low-density lipoprotein cholesterol complexes in rats on a high-fat diet. Orange Monascus pigments, rubropunctatin and monaphilols A and C, exhibit cytotoxic and antitumor activities (IC50 8-10 μM).
- MeSH
- antibakteriální látky farmakologie chemie izolace a purifikace MeSH
- antiflogistika farmakologie chemie izolace a purifikace MeSH
- antiinfekční látky farmakologie chemie izolace a purifikace MeSH
- antioxidancia farmakologie chemie izolace a purifikace MeSH
- biologické pigmenty * farmakologie chemie izolace a purifikace MeSH
- flaviny farmakologie chemie MeSH
- grampozitivní bakterie účinky léků MeSH
- heterocyklické sloučeniny tricyklické MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- Monascus * chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ankaflavin MeSH Prohlížeč
- antibakteriální látky MeSH
- antiflogistika MeSH
- antiinfekční látky MeSH
- antioxidancia MeSH
- biologické pigmenty * MeSH
- flaviny MeSH
- heterocyklické sloučeniny tricyklické MeSH
- monascin MeSH Prohlížeč
A series of eight gold(I) N-heterocyclic carbene (NHC) complexes [Au(IMes)(Ln)] based on 1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene (IMes) and 7-azaindole derivatives (HLn), where n = 1-8 for HL1 = 5-fluoro-7-azaindole, HL2 = 5-bromo-7-azaindole, HL3 = 3-chloro-7-azaindole, HL4 = 3-iodo-7-azaindole, HL5 = 5-bromo-3-chloro-7-azaindole, HL6 = 5-bromo-3-iodo-7-azaindole, HL7 = 4-chloro-2-methyl-7-azaindole and HL8 = 7-azaindole, was prepared, characterised and studied for their in vitro anti-cancer and anti-inflammatory effects. The complexes showed significant cytotoxicity on human ovarian cancer cell lines (A2780, IC50 ≈ 8-19 μM and A2780R, IC50 ≈ 8-19 μM) and lowered toxicity in normal HaCat and MRC-5 cells. Cellular effects of the selected complexes 1 and 7 were evaluated in A2780 cells using flow cytometry. Moreover, the time-dependent cellular uptake in A2780 cells, a shotgun proteomic analysis, an ESI-MS study of hydrolysis and interactions with l-cysteine and reduced glutathione (GSH) were performed. Complexes 1 and 7 revealed remarkable anti-inflammatory effects via inhibition of NF-κB activity in human endothelial cells.
- Klíčová slova
- A2780, Anti-inflammatory, Cellular effects, Cytotoxicity, Gold, NHC, Proteomics,
- MeSH
- antiflogistika * farmakologie chemie MeSH
- antioxidancia * farmakologie chemie MeSH
- antitumorózní látky * farmakologie chemie chemická syntéza MeSH
- apoptóza * účinky léků MeSH
- endoteliální buňky účinky léků metabolismus MeSH
- heterocyklické sloučeniny * chemie farmakologie MeSH
- komplexní sloučeniny farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- methan * analogy a deriváty chemie farmakologie MeSH
- nádorové buněčné linie MeSH
- zlato * chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika * MeSH
- antioxidancia * MeSH
- antitumorózní látky * MeSH
- carbene MeSH Prohlížeč
- heterocyklické sloučeniny * MeSH
- komplexní sloučeniny MeSH
- methan * MeSH
- zlato * MeSH
This study assessed the potential of dried Cayenne pepper (CP; Capsicum annuum L.) as a natural additive to rice bran oil (RBO), grape seed oil (GSO), and virgin olive oil (OO). Key analyses included peroxide and acid values, oxidative stability (Rancimat method), the composition of fatty acids (FAs) (GC-FID method), antioxidant activity (AA; DPPH method), and antimicrobial properties (disc diffusion method). Capsaicin and the dihydrocapsaicin contents in CP were quantified (HPLC-DAD method) as 1499.37 ± 3.64 and 1449.04 ± 5.14 mg/kg DW, respectively. Oleic acid (C18:1cis n9) dominated in OO (69.70%), OO-CP (69.73%), and RBO-CP (38.97%), while linoleic acid (C18:2cis n6) prevailed in RBO (41.34%), GSO (57.93%), and GSO-CP (58.03%). The addition of CP influenced the FA profile, particularly linoleic acid in OO and RBO, and all FAs in GSO. Peroxide and acid values increased significantly in RBO and GSO upon CP addition, but induction times remained unaffected. The strongest AA (77.00 ± 0.13%) was observed in OO-CP. Cayenne pepper significantly enhanced the antioxidant profiles of all oils compared to the counterparts. However, the antimicrobial activity was weak (≤5.0 mm inhibition zones) against tested microorganisms. These findings support CP as a functional additive for enhancing the nutritional and functional properties of gourmet oils, while highlighting the need for further optimization to improve stability and bioactivity.
- Klíčová slova
- Cayenne pepper red, antimicrobial activity, antioxidant activity, fatty acids, health benefits, technological profile, vegetable oils,
- MeSH
- antiinfekční látky farmakologie chemie MeSH
- antioxidancia * farmakologie chemie MeSH
- Capsicum * chemie MeSH
- kapsaicin analogy a deriváty farmakologie analýza MeSH
- mastné kyseliny analýza MeSH
- oleje rostlin chemie farmakologie MeSH
- olivový olej chemie MeSH
- rýžový olej chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky MeSH
- antioxidancia * MeSH
- dihydrocapsaicin MeSH Prohlížeč
- kapsaicin MeSH
- mastné kyseliny MeSH
- oleje rostlin MeSH
- olivový olej MeSH
- rýžový olej MeSH
Hydrogen sulfide (H2S) is an endogenous gasotransmitter with cardioprotective and antiviral effects. In this work, new cysteine-selective nucleoside-H2S-donor hybrid molecules were prepared by conjugating nucleoside biomolecules with a thiol-activatable dithioacetyl group. 5'-Dithioacetate derivatives were synthesized from the canonical nucleosides (uridine, adenosine, cytidine, guanosine and thymidine), and the putative 5'-thio metabolites were also produced from uridine and adenosine. According to our measurements made with an H2S-specific sensor, nucleoside dithioacetates are moderately fast H2S donors, the guanosine derivative showed the fastest kinetics and the adenosine derivative the slowest. The antioxidant activity of 5'-thionucleosides is significantly higher than that of trolox, but lower than that of ascorbic acid, while intact dithioacetates have no remarkable antioxidant effect. In human Calu cells, the guanosine derivative showed a moderate anti-SARS-CoV-2 effect which was also confirmed by virus yield reduction assay. Dithioacetyl-adenosine and its metabolite showed similar acute cardiac effects as adenosine, however, it is noteworthy that both 5'-thio modified adenosines increased left ventricular ejection fraction or stroke volume, which was not observed with native adenosine.
- Klíčová slova
- Antioxidant, Antiviral, Dithioacetate, H2S donor, H2S release kinetics, Nucleoside, SARS-CoV-2,
- MeSH
- adenosin analogy a deriváty MeSH
- antioxidancia * farmakologie chemie MeSH
- antivirové látky * farmakologie chemická syntéza chemie MeSH
- buněčné linie MeSH
- farmakoterapie COVID-19 MeSH
- lidé MeSH
- nukleosidy farmakologie chemie metabolismus MeSH
- SARS-CoV-2 účinky léků metabolismus MeSH
- sulfan * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosin MeSH
- antioxidancia * MeSH
- antivirové látky * MeSH
- nukleosidy MeSH
- sulfan * MeSH
The antioxidant activity of Scorzonera parviflora Jacq. roots were assessed by measuring their ability to scavenge ABTS and DPPH radicals. Bioactivity-guided fractionation was utilized to identify the compound(s) responsible for this activity. The most active phase, ethyl acetate, was isolated using column chromatography. The resulting fractions were then purified using preparative TLC on reverse phase and semi-preparative HPLC. The structures of the pure compounds were elucidated by spectral analysis (MS and 1H, 13C, 2D-NMR). Three undescribed phenolic acid derivatives, namely parvifloric acid A (1), B (2), and C (3), and one new sesquiterpene lactone, parviflorin (4) together with seven known compounds were isolated and identified as scopolin (5), scopoletin (6), caffeic acid (7), protocatechuic acid (8), 4,5-O-dicaffeoylquinic acid (9) 3,5-O-dicaffeoylquinic acid (10), and 3,5-O-dicaffeoylquinic acid methyl ester (11). Finally, the pure compounds obtained were tested to evaluate their antioxidant capacities, using ABTS and DPPH radical scavenging potencies. The highest activity was observed with 3,5-O-dicaffeoylquinic acid (10), followed by its methyl ester.
- Klíčová slova
- Antioxidant activity, Asteraceae, Phenolic acids, Scorzonera parviflora, Sesquiterpene lactone,
- MeSH
- antioxidancia * farmakologie izolace a purifikace chemie MeSH
- fytonutrienty farmakologie izolace a purifikace MeSH
- hydroxybenzoáty * izolace a purifikace farmakologie chemie MeSH
- kořeny rostlin * chemie MeSH
- molekulární struktura MeSH
- Scorzonera * chemie MeSH
- seskviterpeny farmakologie izolace a purifikace chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- fytonutrienty MeSH
- hydroxybenzoáty * MeSH
- phenolic acid MeSH Prohlížeč
- seskviterpeny MeSH
This review comprehensively summarizes recent advances in the field of hydrazinecarboxamide (semicarbazide) derivatives, highlighting their significant therapeutic potential and a broad spectrum of biological activities. As a promising and privileged scaffold in medicinal chemistry, hydrazinecarboxamides have emerged as a versatile class of compounds with significant bioactive properties. Based on their substitutions, their structural diversity permits extensive chemical modifications to enhance their interactions with various biological targets to combat multiple disorders. Notable, this group of compounds has shown significant efficacy against numerous cancer cell lines through diverse mechanisms of action and potent inhibition of enzymes, including cholinesterases, carbonic anhydrases, cyclooxygenases, lipoxygenases, etc. Beyond these, they have also been investigated for their anticonvulsive, analgesic/anti-inflammatory, and antioxidant properties, with detailed structure-activity relationships. For many applications, the hybridization of hydrazinecarboxamides with other bioactive scaffolds, such as primaquine, is of particular interest and offers advantages. Despite their promises, challenges such as suboptimal physicochemical properties and selectivity issues of certain derivatives require further effort. The review aims to inspire future innovation in the design and development of new potential hydrazinecarboxamide-based drugs, addressing existing challenges and expanding their therapeutic applications.
- Klíčová slova
- Anti-inflammatory activity, Anticancer activity, Anticonvulsive activity, Enzyme inhibition, Hydrazinecarboxamides, Semicarbazides, Structure-activity relationship,
- MeSH
- antiflogistika farmakologie chemie MeSH
- antikonvulziva * farmakologie chemie MeSH
- antioxidancia * farmakologie chemie MeSH
- antitumorózní látky * farmakologie chemie MeSH
- hydraziny * chemie farmakologie chemická syntéza MeSH
- inhibitory enzymů farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- semikarbazidy chemická syntéza chemie farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antiflogistika MeSH
- antikonvulziva * MeSH
- antioxidancia * MeSH
- antitumorózní látky * MeSH
- hydraziny * MeSH
- inhibitory enzymů MeSH
- semikarbazidy MeSH
The aim of this study was to analyze the functional properties of newly obtained films based on sodium alginate and lecithin with the addition of antioxidant-rich coffee extracts and to verify their potential as safe edible food packaging materials. In our study, we developed alginate-lecithin films enriched with green or roasted coffee bean extracts. The roasting process of coffee beans had a significant impact on the total phenolic content (TPC) in the studied extracts. The highest value of TPC (2697.2 mg GAE/dm3), as well as antioxidant activity (AA) (17.6 mM T/dm3), was observed for the extract of light-roasted coffee beans. Films with the addition of medium-roasted coffee extracts and baseline films had the highest tensile strength (21.21 ± 0.73 N). The addition of coffee extract improved the barrier properties of the films against UV light with a decrease in the transmittance values (200-400 nm), regardless of the type of extract added. Studies on Caco-2, HepG2 and BJ cells showed that digestated films were non-cytotoxic materials (100-0.1 μg/cm3) and had no negative effect on cell viability; an increase was noted for all cell lines, the highest after 48 h in a dose of 1 μg/cm3 for a film with medium-roasted coffee (194.43 ± 38.30) for Caco-2. The tested films at 20% digestate concentrations demonstrated the ability to reduce nitric oxide (NO) production in the RAW264.7 cell line by 25 to 60% compared to the control. Each of the tested films with coffee extracts had growth inhibitory properties towards selected species of bacteria.
- Klíčová slova
- antimicrobial activity, antioxidant activity, biopolymer-based packaging, coffee extracts, cytotoxicity, edible packaging, lecithin, nitric oxide, sodium alginate,
- MeSH
- algináty * chemie farmakologie MeSH
- antiflogistika * farmakologie chemie MeSH
- antiinfekční látky farmakologie chemie MeSH
- antioxidancia * farmakologie chemie MeSH
- buňky Hep G2 MeSH
- Caco-2 buňky MeSH
- Coffea chemie MeSH
- jedlé filmy MeSH
- káva chemie MeSH
- lecitiny * chemie MeSH
- lidé MeSH
- myši MeSH
- obaly potravin metody MeSH
- rostlinné extrakty * chemie farmakologie MeSH
- semena rostlinná chemie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- algináty * MeSH
- antiflogistika * MeSH
- antiinfekční látky MeSH
- antioxidancia * MeSH
- káva MeSH
- lecitiny * MeSH
- rostlinné extrakty * MeSH
Citrus reticulata L leaves are one of the main post-harvest byproduct, containing bioactive compounds, that are usually undervalued. This work describes the development of a biorefinery process based on the application of supercritical CO2 (SC-CO2) followed by ultrasonic-assisted extraction (UAE) combined with Natural Deep Eutectic Solvents (NaDES) to extract bioactive terpenoids and phenolic compounds from these leaves. Extraction temperature and pressure of SC-CO2 were optimized, obtaining the highest bioactive terpenoids content using 200 bar at 60 °C. A Box-Behnken experimental design showed that 57% of water in NaDES composed of Choline Chloride and Glycerol (1:2) as extraction solvent at 25 °C for 50 min were the optimal UAE-NaDES extraction conditions to obtain the highest bioactive phenolic content from the residue of the optimal SC-CO2 extraction. The optimum extract presented the highest bioactivity and polyphenol content determined by LC-DAD-MS compared with extracts obtained using only water or NaDES as solvent.
- Klíčová slova
- Mandarina leaves, Natural deep eutectic solvents, Phenolic compounds, Supercritical fluid extraction, Terpenoids, Ultrasonic-assisted extraction,
- MeSH
- antioxidancia * chemie izolace a purifikace MeSH
- Citrus * chemie MeSH
- fenoly chemie izolace a purifikace MeSH
- hluboce eutektická rozpouštědla chemie MeSH
- listy rostlin * chemie MeSH
- rostlinné extrakty * chemie izolace a purifikace MeSH
- rozpouštědla chemie MeSH
- superkritická fluidní chromatografie metody MeSH
- technologie zelené chemie MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- antioxidancia * MeSH
- fenoly MeSH
- hluboce eutektická rozpouštědla MeSH
- rostlinné extrakty * MeSH
- rozpouštědla MeSH
Several Ranunculaceae species are used in folk medicine to eliminate pathologies associated with oxidative stress as well as parasitic infections; however, a number of studies confirming their pharmacological properties is limited. In this study, 19 ethanolic extracts obtained from 16 Ranunculaceae species were assayed for in vitro antioxidant, antiproliferative, and antiparasitic potential. The maximum antioxidant potential in both oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was observed for Aconitum toxicum extract [half-maximal inhibitory concentration (IC50) 18.7 and 92.6 μg/mL]. Likewise, Anemone transsilvanica extract exerted the most promising antiproliferative activity against Caco-2 (IC50 46.9 μg/mL) and HT29 (IC50 70.2 μg/mL) cell lines in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a dual antioxidant and cytotoxicity effect was demonstrated for Aconitum moldavicum and Caltha palustris extracts. Whilst the efficacy of extracts was modest against Trypanosoma brucei (IC50 ranging from 88.8 to 269.3 µg/mL), several extracts exhibited high potency against Leishmania infantum promastigotes (Aconitum vulparia IC50 18.8 µg/mL). We also tested them against the clinically relevant intracellular stage and found extract of A. vulparia to be the most effective (IC50 29.0 ± 1.1 µg/mL). All tested extracts showed no or low toxicity against FHs 74Int normal cell line (IC50 ranging from 152.9 to >512 µg/mL). In conclusion, we suggest the above-mentioned plant extracts as potential candidates for development of novel plant-based antioxidant and/or antiproliferative and/or antileishmanial compounds.
- Klíčová slova
- antileishmanial, antioxidants, antitrypanosomal, buttercup family, cytotoxicity, medicinal plants, plant extract,
- MeSH
- antioxidancia * farmakologie chemie MeSH
- antiparazitární látky farmakologie chemie MeSH
- buňky HT-29 MeSH
- Caco-2 buňky MeSH
- léčivé rostliny chemie MeSH
- lidé MeSH
- proliferace buněk * účinky léků MeSH
- Ranunculaceae chemie MeSH
- rostlinné extrakty * farmakologie chemie MeSH
- tradiční lékařství MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rumunsko MeSH
- Názvy látek
- antioxidancia * MeSH
- antiparazitární látky MeSH
- rostlinné extrakty * MeSH
Galangal (Alpinia galanga (L.) Willd) and bitter ginger (Zingiber zerumbet (L.) Roscoe) are aromatic rhizomatous plants that are typically used for culinary purposes. These rhizomatous plants have many biological properties and the potential to be beneficial for pharmaceutics. In this study, we evaluated the antioxidant and antimicrobial activities, with a specific focus on acne-causing bacteria, as well as the phytochemical constituents, of different parts of galangal and bitter ginger. The rhizomes, stems, and leaves of galangal and bitter ginger were separately dried for absolute ethanol and methanol extractions. The extracts were used to evaluate the antioxidant activity using a DPPH radical scavenging assay (0.005-5000 μg/mL), antimicrobial activity against acne-causing bacteria (0.50-31.68 mg/mL), and in vitro cytotoxicity toward human keratinocytes and fibroblasts (62.5-1000 μg/mL), as well as analyses of bioactive phytochemicals via GC-MS and LC-MS/MS (500 ppm). The ethanol and methanol extracts of bitter ginger and galangal's rhizomes (BRhE, BRhM, GRhE, and GRhM), stems (BStE, BStM, GRhE, and GRhM), and leaves (BLeE, BLeM, GLeE, and GLeM), respectively, showed antioxidant and antimicrobial activities. The extracts of all parts of bitter ginger and galangal were greatly antioxidative with 0.06-1.42 mg/mL for the IC50 values, while most of the extracts were strongly antimicrobial against C. acnes DMST 14916, particularly BRhM, BRhE, GRhM, and GRhE (MICs: 3.96-7.92 mg/mL). These rhizome extracts had also antimicrobial activities against S. aureus TISTR 746 (MICs: 7.92-31.68 mg/mL) and S. epidermidis TISTR 518 (MICs: 7.92-15.84 mg/mL). The extracts of bitter ginger and galangal rhizomes were not toxic to HaCaT and MRC-5 even at the highest concentrations. Through GC-MS and LC-MS/MS analysis, phytochemicals in bitter ginger rhizome extracts, including zerumbone, tectorigenin, piperic acid, demethoxycurcumin, and cirsimaritin, and galangal rhizome extracts, including sweroside and neobavaisoflavone, were expected to provide the antioxidant and anti-microbial activities. Therefore, the results suggest that the bitter ginger and galangal extracts could be natural anti-acne compounds with potential for pharmaceutic, cosmetic, and aesthetic applications.
- Klíčová slova
- Acne vulgaris, Alpinia galanga, Zingiber zerumbet, antimicrobial, cytotoxicity, phytochemicals,
- MeSH
- acne vulgaris farmakoterapie mikrobiologie MeSH
- antibakteriální látky farmakologie chemie MeSH
- antiinfekční látky farmakologie chemie MeSH
- antioxidancia * farmakologie chemie MeSH
- fibroblasty účinky léků MeSH
- fytonutrienty * farmakologie chemie MeSH
- keratinocyty * účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- oddenek chemie MeSH
- rostlinné extrakty * farmakologie chemie MeSH
- zázvor lékařský * chemie MeSH
- zázvorníkovité chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antiinfekční látky MeSH
- antioxidancia * MeSH
- fytonutrienty * MeSH
- rostlinné extrakty * MeSH