Edible Alginate-Lecithin Films Enriched with Different Coffee Bean Extracts: Formulation, Non-Cytotoxic, Anti-Inflammatory and Antimicrobial Properties

. 2024 Nov 11 ; 25 (22) : . [epub] 20241111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39596163

Grantová podpora
070015-D020 Research subsidy University of Agriculture in Kraków
AD12 Doctoral School of the University of Agriculture in Kraków
LM2023064 METROFOOD-CZ research infrastructure project

The aim of this study was to analyze the functional properties of newly obtained films based on sodium alginate and lecithin with the addition of antioxidant-rich coffee extracts and to verify their potential as safe edible food packaging materials. In our study, we developed alginate-lecithin films enriched with green or roasted coffee bean extracts. The roasting process of coffee beans had a significant impact on the total phenolic content (TPC) in the studied extracts. The highest value of TPC (2697.2 mg GAE/dm3), as well as antioxidant activity (AA) (17.6 mM T/dm3), was observed for the extract of light-roasted coffee beans. Films with the addition of medium-roasted coffee extracts and baseline films had the highest tensile strength (21.21 ± 0.73 N). The addition of coffee extract improved the barrier properties of the films against UV light with a decrease in the transmittance values (200-400 nm), regardless of the type of extract added. Studies on Caco-2, HepG2 and BJ cells showed that digestated films were non-cytotoxic materials (100-0.1 μg/cm3) and had no negative effect on cell viability; an increase was noted for all cell lines, the highest after 48 h in a dose of 1 μg/cm3 for a film with medium-roasted coffee (194.43 ± 38.30) for Caco-2. The tested films at 20% digestate concentrations demonstrated the ability to reduce nitric oxide (NO) production in the RAW264.7 cell line by 25 to 60% compared to the control. Each of the tested films with coffee extracts had growth inhibitory properties towards selected species of bacteria.

Zobrazit více v PubMed

Zactiti E.M., Kieckbusch T.G. Potassium Sorbate Permeability in Biodegradable Alginate Films: Effect of the Antimicrobial Agent Concentration and Crosslinking Degree. J. Food Eng. 2006;77:462–467. doi: 10.1016/j.jfoodeng.2005.07.015. DOI

Senturk Parreidt T., Müller K., Schmid M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods. 2018;7:170. doi: 10.3390/foods7100170. PubMed DOI PMC

Umaraw P., Verma A.K. Comprehensive Review on Application of Edible Film on Meat and Meat Products: An Eco-Friendly Approach. Crit. Rev. Food Sci. Nutr. 2017;57:1270–1279. doi: 10.1080/10408398.2014.986563. PubMed DOI

Bi D., Yang X., Yao L., Hu Z., Li H., Xu X., Lu J. Potential Food and Nutraceutical Applications of Alginate: A Review. Mar. Drugs. 2022;20:564. doi: 10.3390/md20090564. PubMed DOI PMC

Maizura M., Fazilah A., Norziah M.H., Karim A.A. Antibacterial Activity and Mechanical Properties of Partially Hydrolyzed Sago Starch–Alginate Edible Film Containing Lemongrass Oil. J. Food Sci. 2007;72:C324–C330. doi: 10.1111/j.1750-3841.2007.00427.x. PubMed DOI

Ismillayli N., Hadi S., Dharmayani N.K.T., Sanjaya R.K., Hermanto D. Characterization of Alginate-Chitosan Membrane as Potential Edible Film. IOP Conf. Ser. Mater. Sci. Eng. 2020;833:12073. doi: 10.1088/1757-899X/833/1/012073. DOI

Reyes-Avalos M.C., Femenia A., Minjares-Fuentes R., Contreras-Esquivel J.C., Aguilar-González C.N., Esparza-Rivera J.R., Meza-Velázquez J.A. Improvement of the Quality and the Shelf Life of Figs (Ficus carica) Using an Alginate–Chitosan Edible Film. Food Bioprocess Technol. 2016;9:2114–2124. doi: 10.1007/s11947-016-1796-9. DOI

Reyes-Avalos M.C., Minjares-Fuentes R., Femenia A., Contreras-Esquivel J.C., Quintero-Ramos A., Esparza-Rivera J.R., Meza-Velázquez J.A. Application of an Alginate–Chitosan Edible Film on Figs (Ficus carica): Effect on Bioactive Compounds and Antioxidant Capacity. Food Bioprocess Technol. 2019;12:499–511. doi: 10.1007/s11947-018-2226-y. DOI

Kazemi S.M., Rezaei M. Antimicrobial Effectiveness of Gelatin–Alginate Film Containing Oregano Essential Oil for Fish Preservation. J. Food Saf. 2015;35:482–490. doi: 10.1111/jfs.12198. DOI

Dou L., Li B., Zhang K., Chu X., Hou H. Physical Properties and Antioxidant Activity of Gelatin-Sodium Alginate Edible Films with Tea Polyphenols. Int. J. Biol. Macromol. 2018;118:1377–1383. doi: 10.1016/j.ijbiomac.2018.06.121. PubMed DOI

da Silva Bastos D., de Lima Araújo K.G., da Rocha Leão M.H.M. Ascorbic Acid Retaining Using a New Calcium Alginate-Capsul Based Edible Film. J. Microencapsul. 2009;26:97–103. doi: 10.1080/02652040802175805. PubMed DOI

Senturk Parreidt T., Schott M., Schmid M., Müller K. Effect of Presence and Concentration of Plasticizers, Vegetable Oils, and Surfactants on the Properties of Sodium-Alginate-Based Edible Coatings. Int. J. Mol. Sci. 2018;19:742. doi: 10.3390/ijms19030742. PubMed DOI PMC

Leimann F., Gonçalves O., Sakanaka L., Azevedo A., Lima M., Barreiro M., Shirai M. Food Packaging and Preservation. Academic Press; Cambridge, MA, USA: 2018. Active Food Packaging From Botanical, Animal, Bacterial, and Synthetic Sources; pp. 87–135. DOI

Zhang H., Dudley E.G., Davidson P.M., Harte F. Critical Concentration of Lecithin Enhances the Antimicrobial Activity of Eugenol against Escherichia Coli. Appl. Environ. Microbiol. 2017;83:e03467-16. doi: 10.1128/AEM.03467-16. PubMed DOI PMC

Perrone D., Farah A., Donangelo C., Paulis T., Martin P. Comprehensive Analysis of Major and Minor Chlorogenic Acids and Lactones in Economically Relevant Brazilian Coffee Cultivars. Food Chem. 2008;106:859–867. doi: 10.1016/j.foodchem.2007.06.053. DOI

van Zeeland A.A., de Groot A.J.L., Hall J., Donato F. 8-Hydroxydeoxyguanosine in DNA from Leukocytes of Healthy Adults: Relationship with Cigarette Smoking, Environmental Tobacco Smoke, Alcohol and Coffee Consumption. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 1999;439:249–257. doi: 10.1016/S1383-5718(98)00192-2. PubMed DOI

Almeida A.A.P., Farah A., Silva D.A.M., Nunan E.A., Glória M.B.A. Antibacterial Activity of Coffee Extracts and Selected Coffee Chemical Compounds against Enterobacteria. J. Agric. Food Chem. 2006;54:8738–8743. doi: 10.1021/jf0617317. PubMed DOI

da Silva C.Q., Fernandes A.d.S., Teixeira G.F., França R.J., Marques M.R.d.C., Felzenszwalb I., Falcão D.Q., Ferraz E.R.A. Risk Assessment of Coffees of Different Qualities and Degrees of Roasting. Food Res. Int. 2021;141:110089. doi: 10.1016/j.foodres.2020.110089. PubMed DOI

Amigo-Benavent M., Wang S., Mateos R., Sarriá B., Bravo L. Antiproliferative and Cytotoxic Effects of Green Coffee and Yerba Mate Extracts, Their Main Hydroxycinnamic Acids, Methylxanthine and Metabolites in Different Human Cell Lines. Food Chem. Toxicol. 2017;106:125–138. doi: 10.1016/j.fct.2017.05.019. PubMed DOI

Hečimović I., Belščak-Cvitanović A., Horžić D., Komes D. Comparative Study of Polyphenols and Caffeine in Different Coffee Varieties Affected by the Degree of Roasting. Food Chem. 2011;129:991–1000. doi: 10.1016/j.foodchem.2011.05.059. PubMed DOI

Ramalakshmi K., Rahath Kubra I., Jagan Mohan Rao L. Antioxidant Potential of Low-Grade Coffee Beans. Food Res. Int. 2008;41:96–103. doi: 10.1016/j.foodres.2007.10.003. DOI

Nunes F.M., Coimbra M.A. Role of Hydroxycinnamates in Coffee Melanoidin Formation. Phytochem. Rev. 2010;9:171–185. doi: 10.1007/s11101-009-9151-7. DOI

Belitz H.-D., Grosch W., Schieberle P. Coffee, Tea, Cocoa. In: Belitz H.-D., Grosch W., Schieberle P., editors. Food Chemistry. Springer; Berlin/Heidelberg, Germany: 2004. pp. 939–969.

Kumazawa K., Masuda H. Investigation of the Change in the Flavor of a Coffee Drink during Heat Processing. J. Agric. Food Chem. 2003;51:2674–2678. doi: 10.1021/jf021025f. PubMed DOI

Czerny M., Grosch W. Potent Odorants of Raw Arabica Coffee. Their Changes during Roasting. J. Agric. Food Chem. 2000;48:868–872. doi: 10.1021/jf990609n. PubMed DOI

Fujioka K., Shibamoto T. Chlorogenic Acid and Caffeine Contents in Various Commercial Brewed Coffees. Food Chem. 2008;106:217–221. doi: 10.1016/j.foodchem.2007.05.091. DOI

Andrade P.B., Leitão R., Seabra R.M., Oliveira M.B., Ferreira M.A. 3,4-Dimethoxycinnamic Acid Levels as a Tool for Differentiation of Coffea Canephora Var. Robusta and Coffea Arabica. Food Chem. 1998;61:511–514. doi: 10.1016/S0308-8146(97)00067-8. DOI

Parras P., Martínez-Tomé M., Jiménez A.M., Murcia M.A. Antioxidant Capacity of Coffees of Several Origins Brewed Following Three Different Procedures. Food Chem. 2007;102:582–592. doi: 10.1016/j.foodchem.2006.05.037. DOI

Abdel Aziz M.S., Salama H.E. Developing Multifunctional Edible Coatings Based on Alginate for Active Food Packaging. Int. J. Biol. Macromol. 2021;190:837–844. doi: 10.1016/j.ijbiomac.2021.09.031. PubMed DOI

Badita C.R., Aranghel D., Burducea C., Mereuta P. Characterization of Sodium Alginate Based Films. Rom. J. Phys. 2020;65:1–8.

Othman F., Idris S.N., Nasir N.A.H.A., Nawawi M.A. Preparation and Characterization of Sodium Alginate-Based Edible Film with Antibacterial Additive Using Lemongrass Oil. Sains Malays. 2022;51:485–494. doi: 10.17576/jsm-2022-5102-13. DOI

Kuligowski J., Quintás G., Esteve-Turrillas F.A., Garrigues S., De la Guardia M. On-Line Gel Permeation Chromatography–Attenuated Total Reflectance–Fourier Transform Infrared Determination of Lecithin and Soybean Oil in Dietary Supplements. J. Chromatogr. A. 2008;1185:71–77. doi: 10.1016/j.chroma.2008.01.048. PubMed DOI

Setiadi S., Hidayah N. The Effect of Papain Enzyme Dosage on the Modification of Egg-Yolk Lecithin Emulsifier Product through Enzymatic Hydrolysis Reaction. Int. J. Technol. 2018;9:380–389. doi: 10.14716/ijtech.v9i2.1073. DOI

Shah P.R., Gaitonde U.N., Ganesh A. Influence of Soy-Lecithin as Bio-Additive with Straight Vegetable Oil on CI Engine Characteristics. Renew. Energy. 2018;115:685–696. doi: 10.1016/j.renene.2017.09.013. DOI

Obeidat S.M., Hammoudeh A.Y., Alomary A.A. Application of FTIR Spectroscopy for Assessment of Green Coffee Beans According to Their Origin. J. Appl. Spectrosc. 2018;84:1051–1055. doi: 10.1007/s10812-018-0585-9. DOI

Wang N., Lim L.-T. Fourier Transform Infrared and Physicochemical Analyses of Roasted Coffee. J. Agric. Food Chem. 2012;60:5446–5453. doi: 10.1021/jf300348e. PubMed DOI

Sahachairungrueng W., Meechan C., Veerachat N., Thompson A.K., Teerachaichayut S. Assessing the Levels of Robusta and Arabica in Roasted Ground Coffee Using NIR Hyperspectral Imaging and FTIR Spectroscopy. Foods. 2022;11:3122. doi: 10.3390/foods11193122. PubMed DOI PMC

Lyman D.J., Benck R., Dell S., Merle S., Murray-Wijelath J. FTIR-ATR Analysis of Brewed Coffee: Effect of Roasting Conditions. J. Agric. Food Chem. 2003;51:3268–3272. doi: 10.1021/jf0209793. PubMed DOI

Ribeiro J.S., Salva T.J., Ferreira M.M.C. Chemometric Studies for Quality Control of Processed Brazilian Coffees Using Drifts. J. Food Qual. 2010;33:212–227. doi: 10.1111/j.1745-4557.2010.00309.x. DOI

Craig A.P., Franca A.S., Oliveira L.S., Irudayaraj J., Ileleji K. Application of Elastic Net and Infrared Spectroscopy in the Discrimination between Defective and Non-Defective Roasted Coffees. Talanta. 2014;128:393–400. doi: 10.1016/j.talanta.2014.05.001. PubMed DOI

Khachatryan G., Krzeminska-Fiedorowicz L., Nowak E., Fiedorowicz M. Molecular Structure and Physicochemical Properties of Hylon V and Hylon VII Starches Illuminated with Linearly Polarised Visible Light. LWT-Food Sci. Technol. 2014;58:256–262. doi: 10.1016/j.lwt.2014.02.020. DOI

Schefer S., Oest M., Rohn S. Interactions between Phenolic Acids, Proteins, and Carbohydrates—Influence on Dough and Bread Properties. Foods. 2021;10:2798. doi: 10.3390/foods10112798. PubMed DOI PMC

Zhang H., Yu D., Sun J., Liu X., Jiang L., Guo H., Ren F. Interaction of Plant Phenols with Food Macronutrients: Characterisation and Nutritional–Physiological Consequences. Nutr. Res. Rev. 2014;27:1–15. doi: 10.1017/S095442241300019X. PubMed DOI

Plazinski W., Plazinska A. Molecular Dynamics Study of the Interactions between Phenolic Compounds and Alginate/Alginic Acid Chains. New J. Chem. 2011;35:1607–1614. doi: 10.1039/c1nj20273a. DOI

Khwaldia K., M’Rabet Y., Boulila A. Active Food Packaging Films from Alginate and Date Palm Pit Extract: Physicochemical Properties, Antioxidant Capacity, and Stability. Food Sci. Nutr. 2023;11:555–568. doi: 10.1002/fsn3.3093. PubMed DOI PMC

Kadzińska J., Bryś J., Ostrowska-Ligȩza E., Estéve M., Janowicz M. Influence of Vegetable Oils Addition on the Selected Physical Properties of Apple–Sodium Alginate Edible Films. Polym. Bull. 2019;77:883–900. doi: 10.1007/s00289-019-02777-0. DOI

Mimmo T., Marzadori C., Montecchio D., Gessa C. Characterisation of Ca- and Al-Pectate Gels by Thermal Analysis and FT-IR Spectroscopy. Carbohydr. Res. 2005;340:2510–2519. doi: 10.1016/j.carres.2005.08.011. PubMed DOI

Pereira R., Carvalho A., Vaz D.C., Gil M.H., Mendes A., Bártolo P. Development of Novel Alginate Based Hydrogel Films for Wound Healing Applications. Int. J. Biol. Macromol. 2013;52:221–230. doi: 10.1016/j.ijbiomac.2012.09.031. PubMed DOI

Tongdeesoontorn W., Mauer L.J., Wongruong S., Sriburi P., Reungsang A., Rachtanapun P. Antioxidant Films from Cassava Starch/Gelatin Biocomposite Fortified with Quercetin and TBHQ and Their Applications in Food Models. Polymers. 2021;13:1117. doi: 10.3390/polym13071117. PubMed DOI PMC

Casella I.G., Gatta M., Desimoni E. Applications of a Copper-Modified Gold Electrode for Amperometric Detection of Polar Aliphatic Compounds by Anion-Exchange Chromatography. J. Chromatogr. A. 1998;814:63–70. doi: 10.1016/S0021-9673(98)00403-8. DOI

Kurzrock T., Speer K. Diterpenes and Diterpene Esters in Coffee. Food Rev. Int. 2007;17:433–450. doi: 10.1081/FRI-100108532. DOI

González A.G., Pablos F., Martín M.J., León-Camacho M., Valdenebro M.S. HPLC Analysis of Tocopherols and Triglycerides in Coffee and Their Use as Authentication Parameters. Food Chem. 2001;73:93–101. doi: 10.1016/S0308-8146(00)00282-X. DOI

Bisht A., Alam M., Bhatia S., Gupta S. Studies on Development and Evaluation of Glycerol Incorporated Cellulose and Alginate Based Edible Films. Indian J. Agric. Biochem. 2017;30:67. doi: 10.5958/0974-4479.2017.00010.7. DOI

Such A., Wisła-Świder A., Węsierska E., Nowak E., Szatkowski P., Kopcińska J., Koronowicz A. Edible Chitosan-Alginate Based Coatings Enriched with Turmeric and Oregano Additives: Formulation, Antimicrobial and Non-Cytotoxic Properties. Food Chem. 2023;426:136662. doi: 10.1016/j.foodchem.2023.136662. PubMed DOI

Hutachok N., Koonyosying P., Pankasemsuk T., Angkasith P., Chumpun C., Fucharoen S., Srichairatanakool S. Chemical Analysis, Toxicity Study, and Free-Radical Scavenging and Iron-Binding Assays Involving Coffee (Coffea arabica) Extracts. Molecules. 2021;26:4169. doi: 10.3390/molecules26144169. PubMed DOI PMC

Grzelczyk J., Szwajgier D., Baranowska-Wójcik E., Budryn G., Zakłos-Szyda M., Sosnowska B. Bioaccessibility of Coffee Bean Hydroxycinnamic Acids during in Vitro Digestion Influenced by the Degree of Roasting and Activity of Intestinal Probiotic Bacteria, and Their Activity in Caco-2 and HT29 Cells. Food Chem. 2022;392:133328. doi: 10.1016/j.foodchem.2022.133328. PubMed DOI

Cardona F., Andrés-Lacueva C., Tulipani S., Tinahones F.J., Queipo-Ortuño M.I. Benefits of Polyphenols on Gut Microbiota and Implications in Human Health. J. Nutr. Biochem. 2013;24:1415–1422. doi: 10.1016/j.jnutbio.2013.05.001. PubMed DOI

Vamanu E., Gatea F. Correlations between Microbiota Bioactivity and Bioavailability of Functional Compounds: A Mini-Review. Biomedicines. 2020;8:39. doi: 10.3390/biomedicines8020039. PubMed DOI PMC

Corrêa T.A.F., Rogero M.M., Hassimotto N.M.A., Lajolo F.M. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front. Nutr. 2019;6:188. doi: 10.3389/fnut.2019.00188. PubMed DOI PMC

Kim S.-H., Park S.-Y., Park Y.-L., Myung D.-S., Rew J.-S., Joo Y.-E. Chlorogenic Acid Suppresses Lipopolysaccharide-Induced Nitric Oxide and Interleukin-1β Expression by Inhibiting JAK2/STAT3 Activation in RAW264.7 Cells. Mol. Med. Rep. 2017;16:9224–9232. doi: 10.3892/mmr.2017.7686. PubMed DOI

Funakoshi-Tago M., Nonaka Y., Tago K., Takeda M., Ishihara Y., Sakai A., Matsutaka M., Kobata K., Tamura H. Pyrocatechol, a Component of Coffee, Suppresses LPS-Induced Inflammatory Responses by Inhibiting NF-ΚB and Activating Nrf2. Sci. Rep. 2020;10:2584. doi: 10.1038/s41598-020-59380-x. PubMed DOI PMC

Rebollo-Hernanz M., Zhang Q., Aguilera Y., Martín-Cabrejas M.A., Gonzalez de Mejia E. Relationship of the Phytochemicals from Coffee and Cocoa By-Products with Their Potential to Modulate Biomarkers of Metabolic Syndrome In Vitro. Antioxidants. 2019;8:279. doi: 10.3390/antiox8080279. PubMed DOI PMC

Luo C., Walk S.T., Gordon D.M., Feldgarden M., Tiedje J.M., Konstantinidis K.T. Genome Sequencing of Environmental Escherichia Coli Expands Understanding of the Ecology and Speciation of the Model Bacterial Species. Proc. Natl. Acad. Sci. USA. 2011;108:7200–7205. doi: 10.1073/pnas.1015622108. PubMed DOI PMC

Rosyidi D., Rosyidi D., Radiati L.E., Amri I.A., Prasetyo D., Qosimah D., Murwani S. Antibacterial Activity of Green Coffee Bean Extract against Staphylococcus Aureus and Salmonella Enteritidis. Biotika. 2018;20:12–16.

Mirzajani F., Ghassempour A., Aliahmadi A., Esmaeili M.A. Antibacterial Effect of Silver Nanoparticles on Staphylococcus Aureus. Res. Microbiol. 2011;162:542–549. doi: 10.1016/j.resmic.2011.04.009. PubMed DOI

Salgado-Pabón W., Schlievert P.M. Models Matter: The Search for an Effective Staphylococcus Aureus Vaccine. Nat. Rev. Microbiol. 2014;12:585–591. doi: 10.1038/nrmicro3308. PubMed DOI

Sondi I., Salopek-Sondi B. Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. coli as a Model for Gram-Negative Bacteria. J. Colloid. Interface Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI

Daglia M., Cuzzoni M.T., Dacarro C. Antibacterial Activity of Coffee. J. Agric. Food Chem. 1994;42:2270–2272. doi: 10.1021/jf00046a035. DOI

Nonthakaew A., Matan N., Aewsiri T., Matan N. Caffeine in Foods and Its Antimicrobial Activity. Int. Food Res. J. 2015;22:9.

Dondapati V.B., Bandaru S., Babu S.K., Bandaru N.R., Perala B.K., Voleti A., Sagar V.K., Devara M.S. Antibacterial Activity of Coffee Extract against Common Human Bacterial Pathogens in a Teaching Hospital of Semi Urban Setup. Natl. J. Physiol. Pharm. Pharmacol. 2023;13:773–777. doi: 10.5455/njppp.2023.13.08381202208092022. DOI

Rante H., Wulandari R., Evary Y.M. Antibacterial activity of Robusta Coffee (Coffea robusta L.) peel extract against human pathogenic bacteria. J. Exp. Biol. Agric. Sci. 2021;9:264–268. doi: 10.18006/2021.9(Spl-2-ICOPMES_2020).S264.S268. DOI

de Farias Y.B., Coutinho A.K., Assis R.Q., Rios A.D.O. Biodegradable Sodium Alginate Films Incorporated with Norbixin Salts. J. Food Process Eng. 2020;43:e13345. doi: 10.1111/jfpe.13345. DOI

Martínez-Tomé M., Jiménez-Monreal A., García-Jiménez L., Almela L., Garcia-Diz L., Mariscal-Arcas M., Murcia M. Assessment of Antimicrobial Activity of Coffee Brewed in Three Different Ways from Different Origins. Eur. Food Res. Technol. 2011;233:497–505. doi: 10.1007/s00217-011-1539-0. DOI

Almeida A.A.P., Naghetini C.C., Santos V.R., Antonio A.G., Farah A., Glória M.B.A. Influence of Natural Coffee Compounds, Coffee Extracts and Increased Levels of Caffeine on the Inhibition of Streptococcus Mutans. Food Res. Int. 2012;49:459–461. doi: 10.1016/j.foodres.2012.07.026. DOI

Monente C., Bravo J., Vitas A.I., Arbillaga L., De Peña M.P., Cid C. Coffee and Spent Coffee Extracts Protect against Cell Mutagens and Inhibit Growth of Food-Borne Pathogen Microorganisms. J. Funct. Foods. 2015;12:365–374. doi: 10.1016/j.jff.2014.12.006. DOI

Duangjai A., Suphrom N., Wungrath J., Ontawong A., Nuengchamnong N., Yosboonruang A. Comparison of Antioxidant, Antimicrobial Activities and Chemical Profiles of Three Coffee (Coffea arabica L.) Pulp Aqueous Extracts. Integr. Med. Res. 2016;5:324–331. doi: 10.1016/j.imr.2016.09.001. PubMed DOI PMC

Gómez-Ordóñez E., Rupérez P. FTIR-ATR Spectroscopy as a Tool for Polysaccharide Identification in Edible Brown and Red Seaweeds. Food Hydrocoll. 2011;25:1514–1520. doi: 10.1016/j.foodhyd.2011.02.009. DOI

Singleton V.L., Rossi J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965;16:144–158. doi: 10.5344/ajev.1965.16.3.144. DOI

Blois M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958;181:1199–1200. doi: 10.1038/1811199a0. DOI

Nardini M., Ghiselli A. Determination of Free and Bound Phenolic Acids in Beer. Food Chem. 2004;84:137–143. doi: 10.1016/S0308-8146(03)00257-7. DOI

Nowak E., Khachatryan G., Wisła-Świder A. Structural Changes of Different Starches Illuminated with Linearly Polarised Visible Light. Food Chem. 2021;344:128693. doi: 10.1016/j.foodchem.2020.128693. PubMed DOI

Bello-Perez L.A., Paredes-López O., Roger P., Colonna P. Amylopectin—Properties and Fine Structure. Food Chem. 1996;56:171–176. doi: 10.1016/0308-8146(95)00152-2. DOI

Hanselmann R., Burchard W., Ehrat M., Widmer H.M. Structural Properties of Fractionated Starch Polymers and Their Dependence on the Dissolution Process. Macromolecules. 1996;29:3277–3282. doi: 10.1021/ma951452c. DOI

Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Volume 8. ASTM International; West Conshohocken, PA, USA: 2018. pp. 182–190.

Souza V., Fernando A., Pires J., Rodrigues P., Lopes A., Braz Fernandes F. Physical Properties of Chitosan Films Incorporated with Natural Antioxidants. Ind. Crops Prod. 2017;107:565–572. doi: 10.1016/j.indcrop.2017.04.056. DOI

Jamróz E., Janik M., Juszczak L., Kruk T., Kulawik P., Szuwarzyński M., Kawecka A., Khachatryan K. Composite Biopolymer Films Based on a Polyelectrolyte Complex of Furcellaran and Chitosan. Carbohydr. Polym. 2021;274:118627. doi: 10.1016/j.carbpol.2021.118627. PubMed DOI

Chavoshizadeh S., Pirsa S., Mohtarami F. Conducting/Smart Color Film Based on Wheat Gluten/Chlorophyll/Polypyrrole Nanocomposite. Food Packag. Shelf Life. 2020;24:100501. doi: 10.1016/j.fpsl.2020.100501. DOI

Brodkorb A., Egger L., Alminger M., Alvito P., Assunção R., Ballance S., Bohn T., Bourlieu-Lacanal C., Boutrou R., Carrière F., et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019;14:991–1014. doi: 10.1038/s41596-018-0119-1. PubMed DOI

Sularz O., Koronowicz A., Boycott C., Smoleń S., Stefanska B. Molecular Effects of Iodine-Biofortified Lettuce in Human Gastrointestinal Cancer Cells. Nutrients. 2022;14:4287. doi: 10.3390/nu14204287. PubMed DOI PMC

Krausova G., Hyrslova I., Hynstova I. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation. 2019;5:100. doi: 10.3390/fermentation5040100. DOI

Paudel K.R., Karki R., Kim D.-W. Cepharanthine Inhibits in Vitro VSMC Proliferation and Migration and Vascular Inflammatory Responses Mediated by RAW264.7. Toxicol. Vitr. 2016;34:16–25. doi: 10.1016/j.tiv.2016.03.010. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...