Edible Alginate-Lecithin Films Enriched with Different Coffee Bean Extracts: Formulation, Non-Cytotoxic, Anti-Inflammatory and Antimicrobial Properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
070015-D020
Research subsidy University of Agriculture in Kraków
AD12
Doctoral School of the University of Agriculture in Kraków
LM2023064
METROFOOD-CZ research infrastructure project
PubMed
39596163
PubMed Central
PMC11594067
DOI
10.3390/ijms252212093
PII: ijms252212093
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, antioxidant activity, biopolymer-based packaging, coffee extracts, cytotoxicity, edible packaging, lecithin, nitric oxide, sodium alginate,
- MeSH
- algináty * chemie farmakologie MeSH
- antiflogistika * farmakologie chemie MeSH
- antiinfekční látky farmakologie chemie MeSH
- antioxidancia * farmakologie chemie MeSH
- buňky Hep G2 MeSH
- Caco-2 buňky MeSH
- Coffea chemie MeSH
- jedlé filmy MeSH
- káva chemie MeSH
- lecitiny * chemie MeSH
- lidé MeSH
- myši MeSH
- obaly potravin metody MeSH
- rostlinné extrakty * chemie farmakologie MeSH
- semena rostlinná chemie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- algináty * MeSH
- antiflogistika * MeSH
- antiinfekční látky MeSH
- antioxidancia * MeSH
- káva MeSH
- lecitiny * MeSH
- rostlinné extrakty * MeSH
The aim of this study was to analyze the functional properties of newly obtained films based on sodium alginate and lecithin with the addition of antioxidant-rich coffee extracts and to verify their potential as safe edible food packaging materials. In our study, we developed alginate-lecithin films enriched with green or roasted coffee bean extracts. The roasting process of coffee beans had a significant impact on the total phenolic content (TPC) in the studied extracts. The highest value of TPC (2697.2 mg GAE/dm3), as well as antioxidant activity (AA) (17.6 mM T/dm3), was observed for the extract of light-roasted coffee beans. Films with the addition of medium-roasted coffee extracts and baseline films had the highest tensile strength (21.21 ± 0.73 N). The addition of coffee extract improved the barrier properties of the films against UV light with a decrease in the transmittance values (200-400 nm), regardless of the type of extract added. Studies on Caco-2, HepG2 and BJ cells showed that digestated films were non-cytotoxic materials (100-0.1 μg/cm3) and had no negative effect on cell viability; an increase was noted for all cell lines, the highest after 48 h in a dose of 1 μg/cm3 for a film with medium-roasted coffee (194.43 ± 38.30) for Caco-2. The tested films at 20% digestate concentrations demonstrated the ability to reduce nitric oxide (NO) production in the RAW264.7 cell line by 25 to 60% compared to the control. Each of the tested films with coffee extracts had growth inhibitory properties towards selected species of bacteria.
Zobrazit více v PubMed
Zactiti E.M., Kieckbusch T.G. Potassium Sorbate Permeability in Biodegradable Alginate Films: Effect of the Antimicrobial Agent Concentration and Crosslinking Degree. J. Food Eng. 2006;77:462–467. doi: 10.1016/j.jfoodeng.2005.07.015. DOI
Senturk Parreidt T., Müller K., Schmid M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods. 2018;7:170. doi: 10.3390/foods7100170. PubMed DOI PMC
Umaraw P., Verma A.K. Comprehensive Review on Application of Edible Film on Meat and Meat Products: An Eco-Friendly Approach. Crit. Rev. Food Sci. Nutr. 2017;57:1270–1279. doi: 10.1080/10408398.2014.986563. PubMed DOI
Bi D., Yang X., Yao L., Hu Z., Li H., Xu X., Lu J. Potential Food and Nutraceutical Applications of Alginate: A Review. Mar. Drugs. 2022;20:564. doi: 10.3390/md20090564. PubMed DOI PMC
Maizura M., Fazilah A., Norziah M.H., Karim A.A. Antibacterial Activity and Mechanical Properties of Partially Hydrolyzed Sago Starch–Alginate Edible Film Containing Lemongrass Oil. J. Food Sci. 2007;72:C324–C330. doi: 10.1111/j.1750-3841.2007.00427.x. PubMed DOI
Ismillayli N., Hadi S., Dharmayani N.K.T., Sanjaya R.K., Hermanto D. Characterization of Alginate-Chitosan Membrane as Potential Edible Film. IOP Conf. Ser. Mater. Sci. Eng. 2020;833:12073. doi: 10.1088/1757-899X/833/1/012073. DOI
Reyes-Avalos M.C., Femenia A., Minjares-Fuentes R., Contreras-Esquivel J.C., Aguilar-González C.N., Esparza-Rivera J.R., Meza-Velázquez J.A. Improvement of the Quality and the Shelf Life of Figs (Ficus carica) Using an Alginate–Chitosan Edible Film. Food Bioprocess Technol. 2016;9:2114–2124. doi: 10.1007/s11947-016-1796-9. DOI
Reyes-Avalos M.C., Minjares-Fuentes R., Femenia A., Contreras-Esquivel J.C., Quintero-Ramos A., Esparza-Rivera J.R., Meza-Velázquez J.A. Application of an Alginate–Chitosan Edible Film on Figs (Ficus carica): Effect on Bioactive Compounds and Antioxidant Capacity. Food Bioprocess Technol. 2019;12:499–511. doi: 10.1007/s11947-018-2226-y. DOI
Kazemi S.M., Rezaei M. Antimicrobial Effectiveness of Gelatin–Alginate Film Containing Oregano Essential Oil for Fish Preservation. J. Food Saf. 2015;35:482–490. doi: 10.1111/jfs.12198. DOI
Dou L., Li B., Zhang K., Chu X., Hou H. Physical Properties and Antioxidant Activity of Gelatin-Sodium Alginate Edible Films with Tea Polyphenols. Int. J. Biol. Macromol. 2018;118:1377–1383. doi: 10.1016/j.ijbiomac.2018.06.121. PubMed DOI
da Silva Bastos D., de Lima Araújo K.G., da Rocha Leão M.H.M. Ascorbic Acid Retaining Using a New Calcium Alginate-Capsul Based Edible Film. J. Microencapsul. 2009;26:97–103. doi: 10.1080/02652040802175805. PubMed DOI
Senturk Parreidt T., Schott M., Schmid M., Müller K. Effect of Presence and Concentration of Plasticizers, Vegetable Oils, and Surfactants on the Properties of Sodium-Alginate-Based Edible Coatings. Int. J. Mol. Sci. 2018;19:742. doi: 10.3390/ijms19030742. PubMed DOI PMC
Leimann F., Gonçalves O., Sakanaka L., Azevedo A., Lima M., Barreiro M., Shirai M. Food Packaging and Preservation. Academic Press; Cambridge, MA, USA: 2018. Active Food Packaging From Botanical, Animal, Bacterial, and Synthetic Sources; pp. 87–135. DOI
Zhang H., Dudley E.G., Davidson P.M., Harte F. Critical Concentration of Lecithin Enhances the Antimicrobial Activity of Eugenol against Escherichia Coli. Appl. Environ. Microbiol. 2017;83:e03467-16. doi: 10.1128/AEM.03467-16. PubMed DOI PMC
Perrone D., Farah A., Donangelo C., Paulis T., Martin P. Comprehensive Analysis of Major and Minor Chlorogenic Acids and Lactones in Economically Relevant Brazilian Coffee Cultivars. Food Chem. 2008;106:859–867. doi: 10.1016/j.foodchem.2007.06.053. DOI
van Zeeland A.A., de Groot A.J.L., Hall J., Donato F. 8-Hydroxydeoxyguanosine in DNA from Leukocytes of Healthy Adults: Relationship with Cigarette Smoking, Environmental Tobacco Smoke, Alcohol and Coffee Consumption. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 1999;439:249–257. doi: 10.1016/S1383-5718(98)00192-2. PubMed DOI
Almeida A.A.P., Farah A., Silva D.A.M., Nunan E.A., Glória M.B.A. Antibacterial Activity of Coffee Extracts and Selected Coffee Chemical Compounds against Enterobacteria. J. Agric. Food Chem. 2006;54:8738–8743. doi: 10.1021/jf0617317. PubMed DOI
da Silva C.Q., Fernandes A.d.S., Teixeira G.F., França R.J., Marques M.R.d.C., Felzenszwalb I., Falcão D.Q., Ferraz E.R.A. Risk Assessment of Coffees of Different Qualities and Degrees of Roasting. Food Res. Int. 2021;141:110089. doi: 10.1016/j.foodres.2020.110089. PubMed DOI
Amigo-Benavent M., Wang S., Mateos R., Sarriá B., Bravo L. Antiproliferative and Cytotoxic Effects of Green Coffee and Yerba Mate Extracts, Their Main Hydroxycinnamic Acids, Methylxanthine and Metabolites in Different Human Cell Lines. Food Chem. Toxicol. 2017;106:125–138. doi: 10.1016/j.fct.2017.05.019. PubMed DOI
Hečimović I., Belščak-Cvitanović A., Horžić D., Komes D. Comparative Study of Polyphenols and Caffeine in Different Coffee Varieties Affected by the Degree of Roasting. Food Chem. 2011;129:991–1000. doi: 10.1016/j.foodchem.2011.05.059. PubMed DOI
Ramalakshmi K., Rahath Kubra I., Jagan Mohan Rao L. Antioxidant Potential of Low-Grade Coffee Beans. Food Res. Int. 2008;41:96–103. doi: 10.1016/j.foodres.2007.10.003. DOI
Nunes F.M., Coimbra M.A. Role of Hydroxycinnamates in Coffee Melanoidin Formation. Phytochem. Rev. 2010;9:171–185. doi: 10.1007/s11101-009-9151-7. DOI
Belitz H.-D., Grosch W., Schieberle P. Coffee, Tea, Cocoa. In: Belitz H.-D., Grosch W., Schieberle P., editors. Food Chemistry. Springer; Berlin/Heidelberg, Germany: 2004. pp. 939–969.
Kumazawa K., Masuda H. Investigation of the Change in the Flavor of a Coffee Drink during Heat Processing. J. Agric. Food Chem. 2003;51:2674–2678. doi: 10.1021/jf021025f. PubMed DOI
Czerny M., Grosch W. Potent Odorants of Raw Arabica Coffee. Their Changes during Roasting. J. Agric. Food Chem. 2000;48:868–872. doi: 10.1021/jf990609n. PubMed DOI
Fujioka K., Shibamoto T. Chlorogenic Acid and Caffeine Contents in Various Commercial Brewed Coffees. Food Chem. 2008;106:217–221. doi: 10.1016/j.foodchem.2007.05.091. DOI
Andrade P.B., Leitão R., Seabra R.M., Oliveira M.B., Ferreira M.A. 3,4-Dimethoxycinnamic Acid Levels as a Tool for Differentiation of Coffea Canephora Var. Robusta and Coffea Arabica. Food Chem. 1998;61:511–514. doi: 10.1016/S0308-8146(97)00067-8. DOI
Parras P., Martínez-Tomé M., Jiménez A.M., Murcia M.A. Antioxidant Capacity of Coffees of Several Origins Brewed Following Three Different Procedures. Food Chem. 2007;102:582–592. doi: 10.1016/j.foodchem.2006.05.037. DOI
Abdel Aziz M.S., Salama H.E. Developing Multifunctional Edible Coatings Based on Alginate for Active Food Packaging. Int. J. Biol. Macromol. 2021;190:837–844. doi: 10.1016/j.ijbiomac.2021.09.031. PubMed DOI
Badita C.R., Aranghel D., Burducea C., Mereuta P. Characterization of Sodium Alginate Based Films. Rom. J. Phys. 2020;65:1–8.
Othman F., Idris S.N., Nasir N.A.H.A., Nawawi M.A. Preparation and Characterization of Sodium Alginate-Based Edible Film with Antibacterial Additive Using Lemongrass Oil. Sains Malays. 2022;51:485–494. doi: 10.17576/jsm-2022-5102-13. DOI
Kuligowski J., Quintás G., Esteve-Turrillas F.A., Garrigues S., De la Guardia M. On-Line Gel Permeation Chromatography–Attenuated Total Reflectance–Fourier Transform Infrared Determination of Lecithin and Soybean Oil in Dietary Supplements. J. Chromatogr. A. 2008;1185:71–77. doi: 10.1016/j.chroma.2008.01.048. PubMed DOI
Setiadi S., Hidayah N. The Effect of Papain Enzyme Dosage on the Modification of Egg-Yolk Lecithin Emulsifier Product through Enzymatic Hydrolysis Reaction. Int. J. Technol. 2018;9:380–389. doi: 10.14716/ijtech.v9i2.1073. DOI
Shah P.R., Gaitonde U.N., Ganesh A. Influence of Soy-Lecithin as Bio-Additive with Straight Vegetable Oil on CI Engine Characteristics. Renew. Energy. 2018;115:685–696. doi: 10.1016/j.renene.2017.09.013. DOI
Obeidat S.M., Hammoudeh A.Y., Alomary A.A. Application of FTIR Spectroscopy for Assessment of Green Coffee Beans According to Their Origin. J. Appl. Spectrosc. 2018;84:1051–1055. doi: 10.1007/s10812-018-0585-9. DOI
Wang N., Lim L.-T. Fourier Transform Infrared and Physicochemical Analyses of Roasted Coffee. J. Agric. Food Chem. 2012;60:5446–5453. doi: 10.1021/jf300348e. PubMed DOI
Sahachairungrueng W., Meechan C., Veerachat N., Thompson A.K., Teerachaichayut S. Assessing the Levels of Robusta and Arabica in Roasted Ground Coffee Using NIR Hyperspectral Imaging and FTIR Spectroscopy. Foods. 2022;11:3122. doi: 10.3390/foods11193122. PubMed DOI PMC
Lyman D.J., Benck R., Dell S., Merle S., Murray-Wijelath J. FTIR-ATR Analysis of Brewed Coffee: Effect of Roasting Conditions. J. Agric. Food Chem. 2003;51:3268–3272. doi: 10.1021/jf0209793. PubMed DOI
Ribeiro J.S., Salva T.J., Ferreira M.M.C. Chemometric Studies for Quality Control of Processed Brazilian Coffees Using Drifts. J. Food Qual. 2010;33:212–227. doi: 10.1111/j.1745-4557.2010.00309.x. DOI
Craig A.P., Franca A.S., Oliveira L.S., Irudayaraj J., Ileleji K. Application of Elastic Net and Infrared Spectroscopy in the Discrimination between Defective and Non-Defective Roasted Coffees. Talanta. 2014;128:393–400. doi: 10.1016/j.talanta.2014.05.001. PubMed DOI
Khachatryan G., Krzeminska-Fiedorowicz L., Nowak E., Fiedorowicz M. Molecular Structure and Physicochemical Properties of Hylon V and Hylon VII Starches Illuminated with Linearly Polarised Visible Light. LWT-Food Sci. Technol. 2014;58:256–262. doi: 10.1016/j.lwt.2014.02.020. DOI
Schefer S., Oest M., Rohn S. Interactions between Phenolic Acids, Proteins, and Carbohydrates—Influence on Dough and Bread Properties. Foods. 2021;10:2798. doi: 10.3390/foods10112798. PubMed DOI PMC
Zhang H., Yu D., Sun J., Liu X., Jiang L., Guo H., Ren F. Interaction of Plant Phenols with Food Macronutrients: Characterisation and Nutritional–Physiological Consequences. Nutr. Res. Rev. 2014;27:1–15. doi: 10.1017/S095442241300019X. PubMed DOI
Plazinski W., Plazinska A. Molecular Dynamics Study of the Interactions between Phenolic Compounds and Alginate/Alginic Acid Chains. New J. Chem. 2011;35:1607–1614. doi: 10.1039/c1nj20273a. DOI
Khwaldia K., M’Rabet Y., Boulila A. Active Food Packaging Films from Alginate and Date Palm Pit Extract: Physicochemical Properties, Antioxidant Capacity, and Stability. Food Sci. Nutr. 2023;11:555–568. doi: 10.1002/fsn3.3093. PubMed DOI PMC
Kadzińska J., Bryś J., Ostrowska-Ligȩza E., Estéve M., Janowicz M. Influence of Vegetable Oils Addition on the Selected Physical Properties of Apple–Sodium Alginate Edible Films. Polym. Bull. 2019;77:883–900. doi: 10.1007/s00289-019-02777-0. DOI
Mimmo T., Marzadori C., Montecchio D., Gessa C. Characterisation of Ca- and Al-Pectate Gels by Thermal Analysis and FT-IR Spectroscopy. Carbohydr. Res. 2005;340:2510–2519. doi: 10.1016/j.carres.2005.08.011. PubMed DOI
Pereira R., Carvalho A., Vaz D.C., Gil M.H., Mendes A., Bártolo P. Development of Novel Alginate Based Hydrogel Films for Wound Healing Applications. Int. J. Biol. Macromol. 2013;52:221–230. doi: 10.1016/j.ijbiomac.2012.09.031. PubMed DOI
Tongdeesoontorn W., Mauer L.J., Wongruong S., Sriburi P., Reungsang A., Rachtanapun P. Antioxidant Films from Cassava Starch/Gelatin Biocomposite Fortified with Quercetin and TBHQ and Their Applications in Food Models. Polymers. 2021;13:1117. doi: 10.3390/polym13071117. PubMed DOI PMC
Casella I.G., Gatta M., Desimoni E. Applications of a Copper-Modified Gold Electrode for Amperometric Detection of Polar Aliphatic Compounds by Anion-Exchange Chromatography. J. Chromatogr. A. 1998;814:63–70. doi: 10.1016/S0021-9673(98)00403-8. DOI
Kurzrock T., Speer K. Diterpenes and Diterpene Esters in Coffee. Food Rev. Int. 2007;17:433–450. doi: 10.1081/FRI-100108532. DOI
González A.G., Pablos F., Martín M.J., León-Camacho M., Valdenebro M.S. HPLC Analysis of Tocopherols and Triglycerides in Coffee and Their Use as Authentication Parameters. Food Chem. 2001;73:93–101. doi: 10.1016/S0308-8146(00)00282-X. DOI
Bisht A., Alam M., Bhatia S., Gupta S. Studies on Development and Evaluation of Glycerol Incorporated Cellulose and Alginate Based Edible Films. Indian J. Agric. Biochem. 2017;30:67. doi: 10.5958/0974-4479.2017.00010.7. DOI
Such A., Wisła-Świder A., Węsierska E., Nowak E., Szatkowski P., Kopcińska J., Koronowicz A. Edible Chitosan-Alginate Based Coatings Enriched with Turmeric and Oregano Additives: Formulation, Antimicrobial and Non-Cytotoxic Properties. Food Chem. 2023;426:136662. doi: 10.1016/j.foodchem.2023.136662. PubMed DOI
Hutachok N., Koonyosying P., Pankasemsuk T., Angkasith P., Chumpun C., Fucharoen S., Srichairatanakool S. Chemical Analysis, Toxicity Study, and Free-Radical Scavenging and Iron-Binding Assays Involving Coffee (Coffea arabica) Extracts. Molecules. 2021;26:4169. doi: 10.3390/molecules26144169. PubMed DOI PMC
Grzelczyk J., Szwajgier D., Baranowska-Wójcik E., Budryn G., Zakłos-Szyda M., Sosnowska B. Bioaccessibility of Coffee Bean Hydroxycinnamic Acids during in Vitro Digestion Influenced by the Degree of Roasting and Activity of Intestinal Probiotic Bacteria, and Their Activity in Caco-2 and HT29 Cells. Food Chem. 2022;392:133328. doi: 10.1016/j.foodchem.2022.133328. PubMed DOI
Cardona F., Andrés-Lacueva C., Tulipani S., Tinahones F.J., Queipo-Ortuño M.I. Benefits of Polyphenols on Gut Microbiota and Implications in Human Health. J. Nutr. Biochem. 2013;24:1415–1422. doi: 10.1016/j.jnutbio.2013.05.001. PubMed DOI
Vamanu E., Gatea F. Correlations between Microbiota Bioactivity and Bioavailability of Functional Compounds: A Mini-Review. Biomedicines. 2020;8:39. doi: 10.3390/biomedicines8020039. PubMed DOI PMC
Corrêa T.A.F., Rogero M.M., Hassimotto N.M.A., Lajolo F.M. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front. Nutr. 2019;6:188. doi: 10.3389/fnut.2019.00188. PubMed DOI PMC
Kim S.-H., Park S.-Y., Park Y.-L., Myung D.-S., Rew J.-S., Joo Y.-E. Chlorogenic Acid Suppresses Lipopolysaccharide-Induced Nitric Oxide and Interleukin-1β Expression by Inhibiting JAK2/STAT3 Activation in RAW264.7 Cells. Mol. Med. Rep. 2017;16:9224–9232. doi: 10.3892/mmr.2017.7686. PubMed DOI
Funakoshi-Tago M., Nonaka Y., Tago K., Takeda M., Ishihara Y., Sakai A., Matsutaka M., Kobata K., Tamura H. Pyrocatechol, a Component of Coffee, Suppresses LPS-Induced Inflammatory Responses by Inhibiting NF-ΚB and Activating Nrf2. Sci. Rep. 2020;10:2584. doi: 10.1038/s41598-020-59380-x. PubMed DOI PMC
Rebollo-Hernanz M., Zhang Q., Aguilera Y., Martín-Cabrejas M.A., Gonzalez de Mejia E. Relationship of the Phytochemicals from Coffee and Cocoa By-Products with Their Potential to Modulate Biomarkers of Metabolic Syndrome In Vitro. Antioxidants. 2019;8:279. doi: 10.3390/antiox8080279. PubMed DOI PMC
Luo C., Walk S.T., Gordon D.M., Feldgarden M., Tiedje J.M., Konstantinidis K.T. Genome Sequencing of Environmental Escherichia Coli Expands Understanding of the Ecology and Speciation of the Model Bacterial Species. Proc. Natl. Acad. Sci. USA. 2011;108:7200–7205. doi: 10.1073/pnas.1015622108. PubMed DOI PMC
Rosyidi D., Rosyidi D., Radiati L.E., Amri I.A., Prasetyo D., Qosimah D., Murwani S. Antibacterial Activity of Green Coffee Bean Extract against Staphylococcus Aureus and Salmonella Enteritidis. Biotika. 2018;20:12–16.
Mirzajani F., Ghassempour A., Aliahmadi A., Esmaeili M.A. Antibacterial Effect of Silver Nanoparticles on Staphylococcus Aureus. Res. Microbiol. 2011;162:542–549. doi: 10.1016/j.resmic.2011.04.009. PubMed DOI
Salgado-Pabón W., Schlievert P.M. Models Matter: The Search for an Effective Staphylococcus Aureus Vaccine. Nat. Rev. Microbiol. 2014;12:585–591. doi: 10.1038/nrmicro3308. PubMed DOI
Sondi I., Salopek-Sondi B. Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. coli as a Model for Gram-Negative Bacteria. J. Colloid. Interface Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI
Daglia M., Cuzzoni M.T., Dacarro C. Antibacterial Activity of Coffee. J. Agric. Food Chem. 1994;42:2270–2272. doi: 10.1021/jf00046a035. DOI
Nonthakaew A., Matan N., Aewsiri T., Matan N. Caffeine in Foods and Its Antimicrobial Activity. Int. Food Res. J. 2015;22:9.
Dondapati V.B., Bandaru S., Babu S.K., Bandaru N.R., Perala B.K., Voleti A., Sagar V.K., Devara M.S. Antibacterial Activity of Coffee Extract against Common Human Bacterial Pathogens in a Teaching Hospital of Semi Urban Setup. Natl. J. Physiol. Pharm. Pharmacol. 2023;13:773–777. doi: 10.5455/njppp.2023.13.08381202208092022. DOI
Rante H., Wulandari R., Evary Y.M. Antibacterial activity of Robusta Coffee (Coffea robusta L.) peel extract against human pathogenic bacteria. J. Exp. Biol. Agric. Sci. 2021;9:264–268. doi: 10.18006/2021.9(Spl-2-ICOPMES_2020).S264.S268. DOI
de Farias Y.B., Coutinho A.K., Assis R.Q., Rios A.D.O. Biodegradable Sodium Alginate Films Incorporated with Norbixin Salts. J. Food Process Eng. 2020;43:e13345. doi: 10.1111/jfpe.13345. DOI
Martínez-Tomé M., Jiménez-Monreal A., García-Jiménez L., Almela L., Garcia-Diz L., Mariscal-Arcas M., Murcia M. Assessment of Antimicrobial Activity of Coffee Brewed in Three Different Ways from Different Origins. Eur. Food Res. Technol. 2011;233:497–505. doi: 10.1007/s00217-011-1539-0. DOI
Almeida A.A.P., Naghetini C.C., Santos V.R., Antonio A.G., Farah A., Glória M.B.A. Influence of Natural Coffee Compounds, Coffee Extracts and Increased Levels of Caffeine on the Inhibition of Streptococcus Mutans. Food Res. Int. 2012;49:459–461. doi: 10.1016/j.foodres.2012.07.026. DOI
Monente C., Bravo J., Vitas A.I., Arbillaga L., De Peña M.P., Cid C. Coffee and Spent Coffee Extracts Protect against Cell Mutagens and Inhibit Growth of Food-Borne Pathogen Microorganisms. J. Funct. Foods. 2015;12:365–374. doi: 10.1016/j.jff.2014.12.006. DOI
Duangjai A., Suphrom N., Wungrath J., Ontawong A., Nuengchamnong N., Yosboonruang A. Comparison of Antioxidant, Antimicrobial Activities and Chemical Profiles of Three Coffee (Coffea arabica L.) Pulp Aqueous Extracts. Integr. Med. Res. 2016;5:324–331. doi: 10.1016/j.imr.2016.09.001. PubMed DOI PMC
Gómez-Ordóñez E., Rupérez P. FTIR-ATR Spectroscopy as a Tool for Polysaccharide Identification in Edible Brown and Red Seaweeds. Food Hydrocoll. 2011;25:1514–1520. doi: 10.1016/j.foodhyd.2011.02.009. DOI
Singleton V.L., Rossi J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965;16:144–158. doi: 10.5344/ajev.1965.16.3.144. DOI
Blois M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958;181:1199–1200. doi: 10.1038/1811199a0. DOI
Nardini M., Ghiselli A. Determination of Free and Bound Phenolic Acids in Beer. Food Chem. 2004;84:137–143. doi: 10.1016/S0308-8146(03)00257-7. DOI
Nowak E., Khachatryan G., Wisła-Świder A. Structural Changes of Different Starches Illuminated with Linearly Polarised Visible Light. Food Chem. 2021;344:128693. doi: 10.1016/j.foodchem.2020.128693. PubMed DOI
Bello-Perez L.A., Paredes-López O., Roger P., Colonna P. Amylopectin—Properties and Fine Structure. Food Chem. 1996;56:171–176. doi: 10.1016/0308-8146(95)00152-2. DOI
Hanselmann R., Burchard W., Ehrat M., Widmer H.M. Structural Properties of Fractionated Starch Polymers and Their Dependence on the Dissolution Process. Macromolecules. 1996;29:3277–3282. doi: 10.1021/ma951452c. DOI
Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Volume 8. ASTM International; West Conshohocken, PA, USA: 2018. pp. 182–190.
Souza V., Fernando A., Pires J., Rodrigues P., Lopes A., Braz Fernandes F. Physical Properties of Chitosan Films Incorporated with Natural Antioxidants. Ind. Crops Prod. 2017;107:565–572. doi: 10.1016/j.indcrop.2017.04.056. DOI
Jamróz E., Janik M., Juszczak L., Kruk T., Kulawik P., Szuwarzyński M., Kawecka A., Khachatryan K. Composite Biopolymer Films Based on a Polyelectrolyte Complex of Furcellaran and Chitosan. Carbohydr. Polym. 2021;274:118627. doi: 10.1016/j.carbpol.2021.118627. PubMed DOI
Chavoshizadeh S., Pirsa S., Mohtarami F. Conducting/Smart Color Film Based on Wheat Gluten/Chlorophyll/Polypyrrole Nanocomposite. Food Packag. Shelf Life. 2020;24:100501. doi: 10.1016/j.fpsl.2020.100501. DOI
Brodkorb A., Egger L., Alminger M., Alvito P., Assunção R., Ballance S., Bohn T., Bourlieu-Lacanal C., Boutrou R., Carrière F., et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019;14:991–1014. doi: 10.1038/s41596-018-0119-1. PubMed DOI
Sularz O., Koronowicz A., Boycott C., Smoleń S., Stefanska B. Molecular Effects of Iodine-Biofortified Lettuce in Human Gastrointestinal Cancer Cells. Nutrients. 2022;14:4287. doi: 10.3390/nu14204287. PubMed DOI PMC
Krausova G., Hyrslova I., Hynstova I. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation. 2019;5:100. doi: 10.3390/fermentation5040100. DOI
Paudel K.R., Karki R., Kim D.-W. Cepharanthine Inhibits in Vitro VSMC Proliferation and Migration and Vascular Inflammatory Responses Mediated by RAW264.7. Toxicol. Vitr. 2016;34:16–25. doi: 10.1016/j.tiv.2016.03.010. PubMed DOI